L(s) = 1 | + 2·3-s − 4·5-s − 2·7-s + 2·9-s − 2·11-s − 8·15-s − 4·19-s − 4·21-s − 2·23-s + 2·25-s + 6·27-s − 4·29-s + 2·31-s − 4·33-s + 8·35-s + 4·37-s − 4·41-s − 12·43-s − 8·45-s + 8·47-s − 6·49-s − 4·53-s + 8·55-s − 8·57-s + 20·59-s + 4·61-s − 4·63-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1.78·5-s − 0.755·7-s + 2/3·9-s − 0.603·11-s − 2.06·15-s − 0.917·19-s − 0.872·21-s − 0.417·23-s + 2/5·25-s + 1.15·27-s − 0.742·29-s + 0.359·31-s − 0.696·33-s + 1.35·35-s + 0.657·37-s − 0.624·41-s − 1.82·43-s − 1.19·45-s + 1.16·47-s − 6/7·49-s − 0.549·53-s + 1.07·55-s − 1.05·57-s + 2.60·59-s + 0.512·61-s − 0.503·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.530331281265960957245710013040, −8.431635679106594336422474492883, −7.975669815462529350073322669559, −7.968654378424625052964344745597, −7.29304921297364302984044329819, −7.01440553160506986767525306197, −6.72304875595580026377835859686, −6.14932349097873625968388235514, −5.63225662549928117828236169746, −5.24971375726574680916279888378, −4.41998737654410291314220734517, −4.25775029536186691313102325812, −3.97545217050221942522207015573, −3.39983577575754223695834510551, −2.94471000703079211711062979119, −2.76966127457592119584350767723, −1.99796869686072108032830957604, −1.33929233782949975948073200617, 0, 0,
1.33929233782949975948073200617, 1.99796869686072108032830957604, 2.76966127457592119584350767723, 2.94471000703079211711062979119, 3.39983577575754223695834510551, 3.97545217050221942522207015573, 4.25775029536186691313102325812, 4.41998737654410291314220734517, 5.24971375726574680916279888378, 5.63225662549928117828236169746, 6.14932349097873625968388235514, 6.72304875595580026377835859686, 7.01440553160506986767525306197, 7.29304921297364302984044329819, 7.968654378424625052964344745597, 7.975669815462529350073322669559, 8.431635679106594336422474492883, 8.530331281265960957245710013040