Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 12 x + 182 x^{2} - 996 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.305105860860$, $\pm0.473277563673$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.114525.1 |
Galois group: | $D_{4}$ |
Jacobians: | $276$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6064$ | $48997120$ | $327991869616$ | $2252178099302400$ | $15515800079042480944$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $7110$ | $573624$ | $47455918$ | $3938979432$ | $326940389430$ | $27136047280344$ | $2252292140298718$ | $186940255278231432$ | $15516041200244000550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 276 curves (of which all are hyperelliptic):
- $y^2=8 x^6+33 x^5+73 x^4+82 x^3+10 x^2+70 x+80$
- $y^2=50 x^6+72 x^5+5 x^4+50 x^3+27 x^2+29 x+57$
- $y^2=23 x^6+21 x^5+39 x^4+26 x^3+67 x^2+53 x+7$
- $y^2=43 x^6+38 x^5+58 x^4+23 x^3+46 x^2+80 x+80$
- $y^2=55 x^6+75 x^5+67 x^4+12 x^3+48 x^2+39 x+58$
- $y^2=72 x^6+63 x^5+65 x^4+74 x^3+50 x^2+15 x+30$
- $y^2=74 x^6+75 x^5+30 x^4+17 x^3+71 x^2+33 x+38$
- $y^2=59 x^6+36 x^5+65 x^4+48 x^3+x^2+7 x+12$
- $y^2=46 x^6+24 x^5+54 x^4+55 x^3+59 x^2+70 x+47$
- $y^2=58 x^6+82 x^5+19 x^4+81 x^3+57 x^2+72 x+9$
- $y^2=37 x^6+80 x^5+30 x^4+81 x^3+6 x^2+73 x+65$
- $y^2=80 x^6+36 x^5+80 x^4+30 x^3+2 x^2+76 x+60$
- $y^2=20 x^6+32 x^5+3 x^4+19 x^3+7 x^2+77 x+45$
- $y^2=14 x^6+13 x^5+16 x^4+9 x^3+71 x^2+72 x+78$
- $y^2=42 x^6+12 x^5+50 x^4+78 x^3+69 x^2+x+1$
- $y^2=33 x^6+64 x^5+81 x^4+43 x^3+18 x^2+77 x+68$
- $y^2=47 x^6+58 x^5+36 x^4+12 x^3+73 x^2+76 x+73$
- $y^2=41 x^6+63 x^5+3 x^4+19 x^3+45 x^2+10 x+72$
- $y^2=82 x^6+77 x^5+24 x^4+34 x^3+44 x^2+20 x+23$
- $y^2=51 x^6+22 x^5+8 x^4+42 x^3+72 x^2+3 x+35$
- and 256 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is 4.0.114525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.m_ha | $2$ | (not in LMFDB) |