L(s) = 1 | − 6·9-s + 4·13-s + 8·19-s − 2·25-s − 8·43-s + 16·47-s − 6·49-s + 20·53-s + 24·59-s + 24·67-s + 27·81-s + 8·83-s − 4·89-s − 12·101-s − 16·103-s − 24·117-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 14·169-s + ⋯ |
L(s) = 1 | − 2·9-s + 1.10·13-s + 1.83·19-s − 2/5·25-s − 1.21·43-s + 2.33·47-s − 6/7·49-s + 2.74·53-s + 3.12·59-s + 2.93·67-s + 3·81-s + 0.878·83-s − 0.423·89-s − 1.19·101-s − 1.57·103-s − 2.21·117-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.07·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5345344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.450051283\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.450051283\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.188422496244036675285023161079, −8.555365019787868614097738869246, −8.497414989851784072260795788639, −8.266994327019313964515464863028, −7.74809682337731867011443975559, −7.21226778019007651959982871674, −6.86908410979874442107037569351, −6.53427021683811340721899550693, −5.88790768442191170555969404321, −5.55825837797709445858675244332, −5.39758477840499312834510340574, −5.14594820422196006112091889697, −4.15500868742058610996620963069, −3.93028872770119165447975231645, −3.23145387132707216836473075285, −3.22295812629432437428857419278, −2.31340952033643556350808867688, −2.17816937944146410272551954773, −0.987550290727745191555206437739, −0.67014433514962636519329363162,
0.67014433514962636519329363162, 0.987550290727745191555206437739, 2.17816937944146410272551954773, 2.31340952033643556350808867688, 3.22295812629432437428857419278, 3.23145387132707216836473075285, 3.93028872770119165447975231645, 4.15500868742058610996620963069, 5.14594820422196006112091889697, 5.39758477840499312834510340574, 5.55825837797709445858675244332, 5.88790768442191170555969404321, 6.53427021683811340721899550693, 6.86908410979874442107037569351, 7.21226778019007651959982871674, 7.74809682337731867011443975559, 8.266994327019313964515464863028, 8.497414989851784072260795788639, 8.555365019787868614097738869246, 9.188422496244036675285023161079