L(s) = 1 | − 2·5-s + 4·7-s + 3·9-s + 4·11-s + 7·13-s − 3·17-s − 4·23-s − 7·25-s + 29-s − 8·31-s − 8·35-s − 3·37-s + 9·41-s − 8·43-s − 6·45-s + 16·47-s + 7·49-s − 18·53-s − 8·55-s − 4·59-s − 7·61-s + 12·63-s − 14·65-s + 4·67-s − 8·71-s + 22·73-s + 16·77-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 1.51·7-s + 9-s + 1.20·11-s + 1.94·13-s − 0.727·17-s − 0.834·23-s − 7/5·25-s + 0.185·29-s − 1.43·31-s − 1.35·35-s − 0.493·37-s + 1.40·41-s − 1.21·43-s − 0.894·45-s + 2.33·47-s + 49-s − 2.47·53-s − 1.07·55-s − 0.520·59-s − 0.896·61-s + 1.51·63-s − 1.73·65-s + 0.488·67-s − 0.949·71-s + 2.57·73-s + 1.82·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 43264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.574943349\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.574943349\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.31254166152761015895881843902, −12.25196933517873443161541911548, −11.46712237280786853388564830075, −11.27538744150582375657188587471, −10.85714630926024950776075283777, −10.45902203114330446642378420660, −9.425870767464324672988072167903, −9.278124938169969448763987916790, −8.512862190502260882779457285438, −8.163339103320999247101422951462, −7.61653422691277270803106023594, −7.26066693892898955863983143934, −6.29156876859747315138332365657, −6.12242102580676883025405456319, −5.12611426549667021393662749119, −4.40410805845979791476760715651, −3.85528860880685358985131670949, −3.71877137429415820204304026776, −1.95416902815962143060931653700, −1.37657063688606665036298754407,
1.37657063688606665036298754407, 1.95416902815962143060931653700, 3.71877137429415820204304026776, 3.85528860880685358985131670949, 4.40410805845979791476760715651, 5.12611426549667021393662749119, 6.12242102580676883025405456319, 6.29156876859747315138332365657, 7.26066693892898955863983143934, 7.61653422691277270803106023594, 8.163339103320999247101422951462, 8.512862190502260882779457285438, 9.278124938169969448763987916790, 9.425870767464324672988072167903, 10.45902203114330446642378420660, 10.85714630926024950776075283777, 11.27538744150582375657188587471, 11.46712237280786853388564830075, 12.25196933517873443161541911548, 12.31254166152761015895881843902