Properties

Label 208.2.i.b
Level $208$
Weight $2$
Character orbit 208.i
Analytic conductor $1.661$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,2,Mod(81,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{5} + 4 \zeta_{6} q^{7} + 3 \zeta_{6} q^{9} + ( - 4 \zeta_{6} + 4) q^{11} + (\zeta_{6} + 3) q^{13} - 3 \zeta_{6} q^{17} + (4 \zeta_{6} - 4) q^{23} - 4 q^{25} + ( - \zeta_{6} + 1) q^{29} - 4 q^{31} + \cdots + 12 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 4 q^{7} + 3 q^{9} + 4 q^{11} + 7 q^{13} - 3 q^{17} - 4 q^{23} - 8 q^{25} + q^{29} - 8 q^{31} - 4 q^{35} - 3 q^{37} + 9 q^{41} - 8 q^{43} - 3 q^{45} + 16 q^{47} - 9 q^{49} - 18 q^{53} - 4 q^{55}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 −1.00000 0 2.00000 3.46410i 0 1.50000 2.59808i 0
113.1 0 0 0 −1.00000 0 2.00000 + 3.46410i 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.2.i.b 2
3.b odd 2 1 1872.2.t.k 2
4.b odd 2 1 26.2.c.a 2
8.b even 2 1 832.2.i.f 2
8.d odd 2 1 832.2.i.e 2
12.b even 2 1 234.2.h.c 2
13.c even 3 1 inner 208.2.i.b 2
13.c even 3 1 2704.2.a.h 1
13.e even 6 1 2704.2.a.i 1
13.f odd 12 2 2704.2.f.g 2
20.d odd 2 1 650.2.e.c 2
20.e even 4 2 650.2.o.c 4
28.d even 2 1 1274.2.g.a 2
28.f even 6 1 1274.2.e.m 2
28.f even 6 1 1274.2.h.a 2
28.g odd 6 1 1274.2.e.n 2
28.g odd 6 1 1274.2.h.b 2
39.i odd 6 1 1872.2.t.k 2
52.b odd 2 1 338.2.c.e 2
52.f even 4 2 338.2.e.b 4
52.i odd 6 1 338.2.a.c 1
52.i odd 6 1 338.2.c.e 2
52.j odd 6 1 26.2.c.a 2
52.j odd 6 1 338.2.a.e 1
52.l even 12 2 338.2.b.b 2
52.l even 12 2 338.2.e.b 4
104.n odd 6 1 832.2.i.e 2
104.r even 6 1 832.2.i.f 2
156.p even 6 1 234.2.h.c 2
156.p even 6 1 3042.2.a.e 1
156.r even 6 1 3042.2.a.k 1
156.v odd 12 2 3042.2.b.e 2
260.v odd 6 1 650.2.e.c 2
260.v odd 6 1 8450.2.a.f 1
260.w odd 6 1 8450.2.a.s 1
260.bj even 12 2 650.2.o.c 4
364.q odd 6 1 1274.2.e.n 2
364.v even 6 1 1274.2.g.a 2
364.ba even 6 1 1274.2.h.a 2
364.bi odd 6 1 1274.2.h.b 2
364.br even 6 1 1274.2.e.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.c.a 2 4.b odd 2 1
26.2.c.a 2 52.j odd 6 1
208.2.i.b 2 1.a even 1 1 trivial
208.2.i.b 2 13.c even 3 1 inner
234.2.h.c 2 12.b even 2 1
234.2.h.c 2 156.p even 6 1
338.2.a.c 1 52.i odd 6 1
338.2.a.e 1 52.j odd 6 1
338.2.b.b 2 52.l even 12 2
338.2.c.e 2 52.b odd 2 1
338.2.c.e 2 52.i odd 6 1
338.2.e.b 4 52.f even 4 2
338.2.e.b 4 52.l even 12 2
650.2.e.c 2 20.d odd 2 1
650.2.e.c 2 260.v odd 6 1
650.2.o.c 4 20.e even 4 2
650.2.o.c 4 260.bj even 12 2
832.2.i.e 2 8.d odd 2 1
832.2.i.e 2 104.n odd 6 1
832.2.i.f 2 8.b even 2 1
832.2.i.f 2 104.r even 6 1
1274.2.e.m 2 28.f even 6 1
1274.2.e.m 2 364.br even 6 1
1274.2.e.n 2 28.g odd 6 1
1274.2.e.n 2 364.q odd 6 1
1274.2.g.a 2 28.d even 2 1
1274.2.g.a 2 364.v even 6 1
1274.2.h.a 2 28.f even 6 1
1274.2.h.a 2 364.ba even 6 1
1274.2.h.b 2 28.g odd 6 1
1274.2.h.b 2 364.bi odd 6 1
1872.2.t.k 2 3.b odd 2 1
1872.2.t.k 2 39.i odd 6 1
2704.2.a.h 1 13.c even 3 1
2704.2.a.i 1 13.e even 6 1
2704.2.f.g 2 13.f odd 12 2
3042.2.a.e 1 156.p even 6 1
3042.2.a.k 1 156.r even 6 1
3042.2.b.e 2 156.v odd 12 2
8450.2.a.f 1 260.v odd 6 1
8450.2.a.s 1 260.w odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(208, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$11$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$13$ \( T^{2} - 7T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$29$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$41$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$43$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( (T + 9)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$73$ \( (T - 11)^{2} \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$97$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
show more
show less