L(s) = 1 | + 2·5-s − 7-s − 3·11-s + 6·13-s − 14·17-s + 2·19-s − 4·23-s + 5·25-s − 4·29-s − 10·31-s − 2·35-s − 12·37-s + 7·41-s − 11·43-s + 8·47-s + 8·53-s − 6·55-s + 9·59-s − 4·61-s + 12·65-s − 9·67-s + 26·73-s + 3·77-s − 10·79-s − 28·85-s − 20·89-s − 6·91-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 0.377·7-s − 0.904·11-s + 1.66·13-s − 3.39·17-s + 0.458·19-s − 0.834·23-s + 25-s − 0.742·29-s − 1.79·31-s − 0.338·35-s − 1.97·37-s + 1.09·41-s − 1.67·43-s + 1.16·47-s + 1.09·53-s − 0.809·55-s + 1.17·59-s − 0.512·61-s + 1.48·65-s − 1.09·67-s + 3.04·73-s + 0.341·77-s − 1.12·79-s − 3.03·85-s − 2.11·89-s − 0.628·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2286144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.288195480\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.288195480\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.692852028292728143764759439233, −9.094513053636517639978277475789, −8.879187650211422732028014397875, −8.645828213102016659388457085066, −8.297007245003723769623724790716, −7.62716226424898798625868641622, −7.08625925731816898845934558883, −6.70192547022834597737070744180, −6.63477828194028078777092435341, −5.88838337266873988577668162725, −5.61926652235021639675547931560, −5.28323882528734955200197789927, −4.68025296421865968057462646792, −3.97883507794974064999297875240, −3.90451441694257815634677334175, −3.11636279146314831638953534525, −2.54151304709150034418287131407, −1.90381837922147008051796024635, −1.74540365061615371702421198917, −0.42075995596139965806164806089,
0.42075995596139965806164806089, 1.74540365061615371702421198917, 1.90381837922147008051796024635, 2.54151304709150034418287131407, 3.11636279146314831638953534525, 3.90451441694257815634677334175, 3.97883507794974064999297875240, 4.68025296421865968057462646792, 5.28323882528734955200197789927, 5.61926652235021639675547931560, 5.88838337266873988577668162725, 6.63477828194028078777092435341, 6.70192547022834597737070744180, 7.08625925731816898845934558883, 7.62716226424898798625868641622, 8.297007245003723769623724790716, 8.645828213102016659388457085066, 8.879187650211422732028014397875, 9.094513053636517639978277475789, 9.692852028292728143764759439233