Properties

Label 2-1350-1.1-c1-0-15
Degree $2$
Conductor $1350$
Sign $1$
Analytic cond. $10.7798$
Root an. cond. $3.28326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4·7-s + 8-s + 3·11-s + 13-s + 4·14-s + 16-s + 2·19-s + 3·22-s − 9·23-s + 26-s + 4·28-s − 6·29-s − 10·31-s + 32-s + 7·37-s + 2·38-s + 6·41-s + 10·43-s + 3·44-s − 9·46-s + 9·47-s + 9·49-s + 52-s + 6·53-s + 4·56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.51·7-s + 0.353·8-s + 0.904·11-s + 0.277·13-s + 1.06·14-s + 1/4·16-s + 0.458·19-s + 0.639·22-s − 1.87·23-s + 0.196·26-s + 0.755·28-s − 1.11·29-s − 1.79·31-s + 0.176·32-s + 1.15·37-s + 0.324·38-s + 0.937·41-s + 1.52·43-s + 0.452·44-s − 1.32·46-s + 1.31·47-s + 9/7·49-s + 0.138·52-s + 0.824·53-s + 0.534·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1350\)    =    \(2 \cdot 3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(10.7798\)
Root analytic conductor: \(3.28326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1350,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.215354407\)
\(L(\frac12)\) \(\approx\) \(3.215354407\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.552123385268823908989357476562, −8.770413921931365899679657230999, −7.74584625963531454457647124527, −7.32308184489870229838514539905, −5.96562690254234433093500390097, −5.53572937340660236773412310793, −4.28149575498690048421035953624, −3.90559286987612569172787964649, −2.32224453223285765336342353297, −1.39127211474381031402532958457, 1.39127211474381031402532958457, 2.32224453223285765336342353297, 3.90559286987612569172787964649, 4.28149575498690048421035953624, 5.53572937340660236773412310793, 5.96562690254234433093500390097, 7.32308184489870229838514539905, 7.74584625963531454457647124527, 8.770413921931365899679657230999, 9.552123385268823908989357476562

Graph of the $Z$-function along the critical line