L(s) = 1 | − 2·2-s + 3-s + 3·4-s − 2·5-s − 2·6-s − 2·7-s − 4·8-s − 4·9-s + 4·10-s − 3·11-s + 3·12-s + 4·13-s + 4·14-s − 2·15-s + 5·16-s + 2·17-s + 8·18-s + 19-s − 6·20-s − 2·21-s + 6·22-s + 3·23-s − 4·24-s + 3·25-s − 8·26-s − 6·27-s − 6·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.577·3-s + 3/2·4-s − 0.894·5-s − 0.816·6-s − 0.755·7-s − 1.41·8-s − 4/3·9-s + 1.26·10-s − 0.904·11-s + 0.866·12-s + 1.10·13-s + 1.06·14-s − 0.516·15-s + 5/4·16-s + 0.485·17-s + 1.88·18-s + 0.229·19-s − 1.34·20-s − 0.436·21-s + 1.27·22-s + 0.625·23-s − 0.816·24-s + 3/5·25-s − 1.56·26-s − 1.15·27-s − 1.13·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1416100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1416100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8658043181\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8658043181\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.895263412647910930933652982072, −9.414509694112822754296633537643, −8.961160528431466087238150298261, −8.865874634041693557623422445286, −8.176204801375672867653991187295, −8.134592825295155417069053075167, −7.70349891649080801444665409769, −7.43530710026848675193628801367, −6.57946697583959377468704365654, −6.45422358936658178761733490084, −5.92073612316628727839595628025, −5.51863956820141655180037453940, −4.84887934040511287936898985568, −4.17889696894589455750568958264, −3.45271531612820729040525271488, −3.21759944033804243124736439045, −2.53278891468990519537232574473, −2.46387945864077855749066304371, −1.03127213418727248702140444369, −0.60281490246450573427858039308,
0.60281490246450573427858039308, 1.03127213418727248702140444369, 2.46387945864077855749066304371, 2.53278891468990519537232574473, 3.21759944033804243124736439045, 3.45271531612820729040525271488, 4.17889696894589455750568958264, 4.84887934040511287936898985568, 5.51863956820141655180037453940, 5.92073612316628727839595628025, 6.45422358936658178761733490084, 6.57946697583959377468704365654, 7.43530710026848675193628801367, 7.70349891649080801444665409769, 8.134592825295155417069053075167, 8.176204801375672867653991187295, 8.865874634041693557623422445286, 8.961160528431466087238150298261, 9.414509694112822754296633537643, 9.895263412647910930933652982072