Properties

Label 1190.2.a.h
Level $1190$
Weight $2$
Character orbit 1190.a
Self dual yes
Analytic conductor $9.502$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1190,2,Mod(1,1190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1190.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1190.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,1,2,-2,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.50219784053\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta q^{3} + q^{4} - q^{5} - \beta q^{6} - q^{7} - q^{8} + (\beta - 2) q^{9} + q^{10} + (3 \beta - 3) q^{11} + \beta q^{12} + 4 \beta q^{13} + q^{14} - \beta q^{15} + q^{16} + q^{17} + \cdots + ( - 6 \beta + 9) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} - 2 q^{5} - q^{6} - 2 q^{7} - 2 q^{8} - 3 q^{9} + 2 q^{10} - 3 q^{11} + q^{12} + 4 q^{13} + 2 q^{14} - q^{15} + 2 q^{16} + 2 q^{17} + 3 q^{18} + q^{19} - 2 q^{20} - q^{21}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−1.00000 −0.618034 1.00000 −1.00000 0.618034 −1.00000 −1.00000 −2.61803 1.00000
1.2 −1.00000 1.61803 1.00000 −1.00000 −1.61803 −1.00000 −1.00000 −0.381966 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1190.2.a.h 2
4.b odd 2 1 9520.2.a.p 2
5.b even 2 1 5950.2.a.y 2
7.b odd 2 1 8330.2.a.be 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1190.2.a.h 2 1.a even 1 1 trivial
5950.2.a.y 2 5.b even 2 1
8330.2.a.be 2 7.b odd 2 1
9520.2.a.p 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1190))\):

\( T_{3}^{2} - T_{3} - 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 3T_{11} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 3T - 9 \) Copy content Toggle raw display
$13$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$23$ \( T^{2} - 3T - 29 \) Copy content Toggle raw display
$29$ \( T^{2} - 3T - 9 \) Copy content Toggle raw display
$31$ \( T^{2} - 9T + 19 \) Copy content Toggle raw display
$37$ \( T^{2} - 14T + 44 \) Copy content Toggle raw display
$41$ \( T^{2} - 3T - 29 \) Copy content Toggle raw display
$43$ \( T^{2} - 7T - 49 \) Copy content Toggle raw display
$47$ \( T^{2} + 11T - 1 \) Copy content Toggle raw display
$53$ \( T^{2} - 17T + 61 \) Copy content Toggle raw display
$59$ \( T^{2} - 5T - 55 \) Copy content Toggle raw display
$61$ \( T^{2} + 16T + 44 \) Copy content Toggle raw display
$67$ \( T^{2} - 11T - 31 \) Copy content Toggle raw display
$71$ \( T^{2} + 12T - 44 \) Copy content Toggle raw display
$73$ \( T^{2} - 24T + 124 \) Copy content Toggle raw display
$79$ \( T^{2} - 180 \) Copy content Toggle raw display
$83$ \( (T - 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 8T - 64 \) Copy content Toggle raw display
$97$ \( T^{2} - 24T + 124 \) Copy content Toggle raw display
show more
show less