Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 - x + 37 x^{2} - 19 x^{3} + 361 x^{4}$ |
Frobenius angles: | $\pm0.440576737334$, $\pm0.522585002744$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.138725.1 |
Galois group: | $D_{4}$ |
Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $379$ | $158801$ | $47420101$ | $16824807149$ | $6127512765424$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $19$ | $435$ | $6913$ | $129099$ | $2474664$ | $47064351$ | $893900971$ | $16983323139$ | $322687245637$ | $6131068570150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=5 x^6+15 x^5+14 x^4+18 x^3+7 x^2+3 x+3$
- $y^2=11 x^6+6 x^5+13 x^4+13 x^3+2 x^2+14 x+15$
- $y^2=15 x^6+16 x^5+9 x^4+16 x^3+9 x^2+13 x+5$
- $y^2=13 x^6+14 x^5+7 x^4+5 x^3+9 x^2+8$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is 4.0.138725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.b_bl | $2$ | (not in LMFDB) |