Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 17 x + 167 x^{2} - 901 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.197207121817$, $\pm0.385018073883$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.331525.2 |
Galois group: | $D_{4}$ |
Jacobians: | $48$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2059$ | $8019805$ | $22298947351$ | $62289063553525$ | $174887924573492944$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $37$ | $2855$ | $149779$ | $7894203$ | $418196582$ | $22164443615$ | $1174713182099$ | $62259701882803$ | $3299763517021837$ | $174887468786894150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=28 x^6+6 x^5+9 x^4+37 x^3+26 x^2+33 x+15$
- $y^2=23 x^6+30 x^5+24 x^4+13 x^3+42 x^2+18 x+10$
- $y^2=20 x^6+20 x^5+25 x^4+36 x^3+14 x^2+10 x+30$
- $y^2=10 x^6+7 x^5+2 x^4+29 x^3+34 x^2+8 x+23$
- $y^2=7 x^6+40 x^5+41 x^4+20 x^3+39 x^2+33 x+13$
- $y^2=51 x^6+26 x^5+48 x^4+52 x^3+41 x^2+27 x$
- $y^2=51 x^6+50 x^5+34 x^4+27 x^3+4 x^2+41 x+2$
- $y^2=35 x^6+24 x^5+39 x^4+2 x^3+23 x^2+44 x+14$
- $y^2=40 x^6+33 x^5+51 x^4+17 x^3+28 x^2+17 x+36$
- $y^2=44 x^6+38 x^5+11 x^4+29 x^3+28 x^2+24 x+13$
- $y^2=49 x^6+18 x^5+19 x^4+23 x^3+27 x^2+6 x+5$
- $y^2=x^6+12 x^5+52 x^4+36 x^3+8 x^2+13 x+5$
- $y^2=21 x^6+8 x^5+24 x^4+13 x^3+6 x^2+32 x+20$
- $y^2=30 x^6+15 x^5+21 x^4+6 x^3+3 x^2+48 x+24$
- $y^2=12 x^6+33 x^5+5 x^4+23 x^3+7 x^2+52 x+26$
- $y^2=23 x^6+38 x^5+42 x^4+21 x^3+25 x^2+29 x+29$
- $y^2=35 x^6+39 x^5+18 x^3+26 x^2+31 x+30$
- $y^2=6 x^6+52 x^5+30 x^4+7 x^3+42 x^2+2 x+41$
- $y^2=29 x^6+8 x^5+43 x^4+23 x^3+39 x^2+45 x+30$
- $y^2=34 x^6+14 x^5+6 x^4+39 x^3+50 x^2+41 x+4$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is 4.0.331525.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.r_gl | $2$ | (not in LMFDB) |