Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 11 x + 93 x^{2} + 517 x^{3} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.497906677546$, $\pm0.799900798974$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.305525.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
Isomorphism classes: | 96 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2831$ | $5025025$ | $10760005349$ | $23807186568125$ | $52591957895449456$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $59$ | $2275$ | $103637$ | $4878843$ | $229313724$ | $10779590575$ | $506622749027$ | $23811273876963$ | $1119130523383889$ | $52599132234840750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=12 x^6+8 x^5+x^4+7 x^3+16 x^2+28$
- $y^2=30 x^6+38 x^5+24 x^4+31 x^3+46 x^2+45 x+46$
- $y^2=27 x^6+40 x^5+30 x^4+22 x^3+27 x^2+x+2$
- $y^2=18 x^6+17 x^5+40 x^4+35 x^3+24 x^2+41 x+41$
- $y^2=3 x^6+8 x^5+31 x^4+6 x^3+9 x^2+19 x+5$
- $y^2=27 x^6+8 x^5+37 x^4+45 x^3+2 x^2+26 x+17$
- $y^2=12 x^6+33 x^5+10 x^4+7 x^3+27 x^2+2 x+16$
- $y^2=3 x^6+6 x^5+10 x^4+16 x^3+34 x^2+10 x+14$
- $y^2=14 x^6+34 x^5+16 x^4+46 x^3+11 x^2+45 x+30$
- $y^2=2 x^6+6 x^5+26 x^4+3 x^3+35 x^2+45 x+14$
- $y^2=12 x^6+19 x^5+23 x^4+22 x^3+3 x^2+3 x+30$
- $y^2=28 x^6+x^5+x^4+13 x^3+24 x^2+14 x+12$
- $y^2=34 x^6+25 x^5+28 x^4+41 x^3+17 x^2+30 x+20$
- $y^2=35 x^6+15 x^5+6 x^4+26 x^3+28 x^2+3 x+9$
- $y^2=4 x^6+2 x^5+31 x^4+43 x^2+46 x+8$
- $y^2=43 x^6+13 x^5+14 x^4+34 x^3+23 x^2+30 x+44$
- $y^2=24 x^6+x^5+x^4+18 x^3+42 x^2+44 x+8$
- $y^2=11 x^6+35 x^5+34 x^4+24 x^3+31 x^2+23 x+12$
- $y^2=37 x^6+4 x^5+31 x^4+24 x^3+20 x^2+7 x+20$
- $y^2=15 x^6+7 x^5+33 x^4+32 x^3+29 x^2+15 x+14$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is 4.0.305525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.al_dp | $2$ | (not in LMFDB) |