Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 11 x + 103 x^{2} - 737 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.197269345404$, $\pm0.545384685471$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.593525.1 |
Galois group: | $D_{4}$ |
Jacobians: | $189$ |
Isomorphism classes: | 231 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3845$ | $20536145$ | $90415832495$ | $406058011982525$ | $1823001829379478000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $57$ | $4575$ | $300621$ | $20150643$ | $1350246592$ | $90459280875$ | $6060709267131$ | $406067650953843$ | $27206534461501947$ | $1822837802251591750$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 189 curves (of which all are hyperelliptic):
- $y^2=61 x^6+33 x^5+22 x^4+6 x^3+64 x^2+13 x+14$
- $y^2=49 x^6+9 x^5+43 x^4+11 x^3+20 x^2+64 x+60$
- $y^2=12 x^6+36 x^5+61 x^4+12 x^3+37 x^2+35 x+57$
- $y^2=2 x^6+61 x^5+3 x^3+58 x^2+21 x+20$
- $y^2=4 x^6+38 x^5+33 x^4+63 x^3+29 x^2+23 x+45$
- $y^2=58 x^6+29 x^5+44 x^4+24 x^3+63 x^2+38 x+54$
- $y^2=65 x^6+26 x^5+66 x^4+39 x^3+14 x^2+29 x$
- $y^2=25 x^6+25 x^5+11 x^4+33 x^3+25 x^2+4 x+58$
- $y^2=28 x^6+47 x^5+61 x^4+7 x^3+12 x^2+61 x+3$
- $y^2=3 x^6+62 x^5+60 x^4+9 x^3+48 x^2+37 x+12$
- $y^2=54 x^6+2 x^5+12 x^4+5 x^3+5 x^2+57 x+42$
- $y^2=54 x^6+52 x^5+52 x^4+23 x^3+17 x^2+9 x+35$
- $y^2=33 x^6+57 x^5+10 x^4+56 x^3+x^2+3 x+5$
- $y^2=x^6+22 x^5+2 x^4+7 x^3+6 x^2+38 x+21$
- $y^2=27 x^6+33 x^5+21 x^4+32 x^2+37 x+34$
- $y^2=62 x^6+8 x^5+42 x^4+55 x^3+x^2+63 x+63$
- $y^2=13 x^6+56 x^5+51 x^4+53 x^3+65 x^2+x+47$
- $y^2=53 x^6+x^5+63 x^4+44 x^3+37 x^2+48 x+38$
- $y^2=30 x^6+51 x^5+63 x^4+19 x^3+66 x^2+59 x+21$
- $y^2=5 x^6+53 x^5+64 x^4+40 x^3+7 x^2+40 x+58$
- and 169 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.593525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.l_dz | $2$ | (not in LMFDB) |