Properties

Label 2.67.al_dz
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 11 x + 103 x^{2} - 737 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.197269345404$, $\pm0.545384685471$
Angle rank:  $2$ (numerical)
Number field:  4.0.593525.1
Galois group:  $D_{4}$
Jacobians:  $189$
Isomorphism classes:  231

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3845$ $20536145$ $90415832495$ $406058011982525$ $1823001829379478000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $57$ $4575$ $300621$ $20150643$ $1350246592$ $90459280875$ $6060709267131$ $406067650953843$ $27206534461501947$ $1822837802251591750$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 189 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.593525.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.l_dz$2$(not in LMFDB)