Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 22 x^{2} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.227766944399$, $\pm0.772233055601$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{5}, \sqrt{-34})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $450$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6220$ | $38688400$ | $243087856780$ | $1518043677926400$ | $9468276078669455500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $80$ | $6198$ | $493040$ | $38974078$ | $3077056400$ | $243088258038$ | $19203908986160$ | $1517108677802878$ | $119851595982618320$ | $9468276074712063798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 450 curves (of which all are hyperelliptic):
- $y^2=41 x^6+7 x^5+31 x^4+78 x^3+70 x^2+37 x+39$
- $y^2=44 x^6+21 x^5+14 x^4+76 x^3+52 x^2+32 x+38$
- $y^2=73 x^6+16 x^5+34 x^4+43 x^3+77 x^2+33 x+2$
- $y^2=61 x^6+48 x^5+23 x^4+50 x^3+73 x^2+20 x+6$
- $y^2=21 x^6+73 x^5+47 x^4+34 x^3+70 x^2+19 x+21$
- $y^2=63 x^6+61 x^5+62 x^4+23 x^3+52 x^2+57 x+63$
- $y^2=37 x^6+15 x^5+41 x^4+42 x^3+58 x^2+74 x+50$
- $y^2=32 x^6+45 x^5+44 x^4+47 x^3+16 x^2+64 x+71$
- $y^2=23 x^6+2 x^5+77 x^4+3 x^3+17 x^2+78 x+76$
- $y^2=69 x^6+6 x^5+73 x^4+9 x^3+51 x^2+76 x+70$
- $y^2=60 x^6+13 x^5+18 x^4+61 x^3+28 x^2+70 x+27$
- $y^2=22 x^6+39 x^5+54 x^4+25 x^3+5 x^2+52 x+2$
- $y^2=74 x^6+26 x^5+4 x^4+52 x^3+8 x^2+22 x+25$
- $y^2=64 x^6+78 x^5+12 x^4+77 x^3+24 x^2+66 x+75$
- $y^2=21 x^6+69 x^5+64 x^4+31 x^3+54 x^2+18 x+18$
- $y^2=63 x^6+49 x^5+34 x^4+14 x^3+4 x^2+54 x+54$
- $y^2=10 x^6+59 x^5+78 x^4+15 x^3+58 x^2+44 x+68$
- $y^2=30 x^6+19 x^5+76 x^4+45 x^3+16 x^2+53 x+46$
- $y^2=23 x^6+12 x^5+67 x^4+62 x^3+70 x^2+66 x+6$
- $y^2=70 x^6+22 x^5+64 x^4+12 x^3+29 x^2+9 x+3$
- and 430 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{5}, \sqrt{-34})\). |
| The base change of $A$ to $\F_{79^{2}}$ is 1.6241.aw 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-170}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.a_w | $4$ | (not in LMFDB) |