L(s) = 1 | − 6·11-s + 5·19-s + 8·25-s − 15·41-s − 7·43-s + 5·49-s − 3·59-s − 10·67-s − 5·73-s + 21·83-s − 18·89-s + 16·97-s − 9·107-s + 12·113-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + ⋯ |
L(s) = 1 | − 1.80·11-s + 1.14·19-s + 8/5·25-s − 2.34·41-s − 1.06·43-s + 5/7·49-s − 0.390·59-s − 1.22·67-s − 0.585·73-s + 2.30·83-s − 1.90·89-s + 1.62·97-s − 0.870·107-s + 1.12·113-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 8/13·169-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 746496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.994032282415865268137972191957, −7.68286870889962513798219901245, −7.20180902979081824212736940148, −6.79031856578914068460655232230, −6.32843742988877713246246972828, −5.62231283902153284273180036910, −5.26786768646182187811642613514, −4.92410303935684114530511570842, −4.52216724975806029479532901342, −3.58007291442527064245523264577, −3.15847917784775617757409138461, −2.74336165283225855450779555201, −2.00308291990562626754201974288, −1.14802039056275806991843916665, 0,
1.14802039056275806991843916665, 2.00308291990562626754201974288, 2.74336165283225855450779555201, 3.15847917784775617757409138461, 3.58007291442527064245523264577, 4.52216724975806029479532901342, 4.92410303935684114530511570842, 5.26786768646182187811642613514, 5.62231283902153284273180036910, 6.32843742988877713246246972828, 6.79031856578914068460655232230, 7.20180902979081824212736940148, 7.68286870889962513798219901245, 7.994032282415865268137972191957