Properties

Label 2.79.a_dz
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $1 + 103 x^{2} + 6241 x^{4}$
Frobenius angles:  $\pm0.363013643704$, $\pm0.636986356296$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-29}, \sqrt{55})\)
Galois group:  $C_2^2$
Jacobians:  $408$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6345$ $40259025$ $243086619780$ $1517254798322025$ $9468276080180333625$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $80$ $6448$ $493040$ $38953828$ $3077056400$ $243085784038$ $19203908986160$ $1517108958690628$ $119851595982618320$ $9468276077733820048$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 408 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79^{2}}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-29}, \sqrt{55})\).
Endomorphism algebra over $\overline{\F}_{79}$
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.dz 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1595}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.a_adz$4$(not in LMFDB)