Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 103 x^{2} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.363013643704$, $\pm0.636986356296$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-29}, \sqrt{55})\) |
Galois group: | $C_2^2$ |
Jacobians: | $408$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6345$ | $40259025$ | $243086619780$ | $1517254798322025$ | $9468276080180333625$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $6448$ | $493040$ | $38953828$ | $3077056400$ | $243085784038$ | $19203908986160$ | $1517108958690628$ | $119851595982618320$ | $9468276077733820048$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 408 curves (of which all are hyperelliptic):
- $y^2=74 x^6+71 x^5+23 x^4+71 x^3+8 x^2+5 x+14$
- $y^2=64 x^6+55 x^5+69 x^4+55 x^3+24 x^2+15 x+42$
- $y^2=11 x^6+74 x^5+67 x^4+73 x^3+26 x^2+44 x+30$
- $y^2=33 x^6+64 x^5+43 x^4+61 x^3+78 x^2+53 x+11$
- $y^2=68 x^6+13 x^5+23 x^4+28 x^3+20 x^2+58 x+14$
- $y^2=46 x^6+39 x^5+69 x^4+5 x^3+60 x^2+16 x+42$
- $y^2=76 x^6+68 x^5+7 x^4+14 x^3+65 x^2+9 x+21$
- $y^2=70 x^6+46 x^5+21 x^4+42 x^3+37 x^2+27 x+63$
- $y^2=55 x^6+36 x^5+67 x^4+18 x^3+37 x^2+42 x+35$
- $y^2=30 x^6+12 x^5+30 x^4+35 x^3+28 x^2+61 x+47$
- $y^2=11 x^6+36 x^5+11 x^4+26 x^3+5 x^2+25 x+62$
- $y^2=11 x^6+57 x^5+4 x^4+9 x^3+23 x^2+5 x+51$
- $y^2=33 x^6+13 x^5+12 x^4+27 x^3+69 x^2+15 x+74$
- $y^2=52 x^6+15 x^5+10 x^4+41 x^3+62 x+25$
- $y^2=77 x^6+45 x^5+30 x^4+44 x^3+28 x+75$
- $y^2=76 x^6+16 x^5+10 x^4+51 x^3+50 x^2+55 x+14$
- $y^2=9 x^6+78 x^5+62 x^4+74 x^3+6 x^2+39 x+32$
- $y^2=27 x^6+76 x^5+28 x^4+64 x^3+18 x^2+38 x+17$
- $y^2=18 x^6+77 x^5+48 x^4+59 x^3+35 x^2+15 x+51$
- $y^2=54 x^6+73 x^5+65 x^4+19 x^3+26 x^2+45 x+74$
- and 388 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-29}, \sqrt{55})\). |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.dz 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1595}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.a_adz | $4$ | (not in LMFDB) |