Invariants
Base field: | $\F_{37}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 52 x^{2} + 1369 x^{4}$ |
Frobenius angles: | $\pm0.374011795627$, $\pm0.625988204373$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-14}, \sqrt{22})\) |
Galois group: | $C_2^2$ |
Jacobians: | $132$ |
Isomorphism classes: | 144 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1422$ | $2022084$ | $2565653454$ | $3512610646416$ | $4808584277441982$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $1474$ | $50654$ | $1874230$ | $69343958$ | $2565580498$ | $94931877134$ | $3512486948254$ | $129961739795078$ | $4808584182466114$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=22 x^6+24 x^5+32 x^4+21 x^3+10 x^2+29 x+19$
- $y^2=7 x^6+11 x^5+27 x^4+5 x^3+20 x^2+21 x+1$
- $y^2=34 x^6+12 x^5+8 x^4+3 x^3+13 x^2+x+32$
- $y^2=31 x^6+24 x^5+16 x^4+6 x^3+26 x^2+2 x+27$
- $y^2=30 x^6+3 x^5+27 x^4+36 x^3+18 x$
- $y^2=23 x^6+6 x^5+17 x^4+35 x^3+36 x$
- $y^2=36 x^6+13 x^5+18 x^3+21 x^2+17 x+30$
- $y^2=35 x^6+26 x^5+36 x^3+5 x^2+34 x+23$
- $y^2=4 x^6+10 x^5+11 x^4+4 x^3+11 x^2+36 x+36$
- $y^2=8 x^6+20 x^5+22 x^4+8 x^3+22 x^2+35 x+35$
- $y^2=19 x^6+21 x^5+7 x^4+7 x^3+36 x^2+12 x+25$
- $y^2=x^6+5 x^5+14 x^4+14 x^3+35 x^2+24 x+13$
- $y^2=5 x^6+30 x^5+4 x^4+16 x^3+22 x^2+11 x+4$
- $y^2=10 x^6+23 x^5+8 x^4+32 x^3+7 x^2+22 x+8$
- $y^2=15 x^6+17 x^5+8 x^4+13 x^3+28 x^2+9 x+17$
- $y^2=30 x^6+34 x^5+16 x^4+26 x^3+19 x^2+18 x+34$
- $y^2=4 x^5+9 x^4+3 x^3+14 x^2+22 x+6$
- $y^2=8 x^5+18 x^4+6 x^3+28 x^2+7 x+12$
- $y^2=29 x^6+34 x^5+9 x^4+34 x^3+x^2+14 x+30$
- $y^2=21 x^6+31 x^5+18 x^4+31 x^3+2 x^2+28 x+23$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-14}, \sqrt{22})\). |
The base change of $A$ to $\F_{37^{2}}$ is 1.1369.ca 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-77}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.37.a_aca | $4$ | (not in LMFDB) |