| L(s) = 1 | + 2-s − 2·3-s − 4-s − 2·6-s − 3·8-s + 9-s − 4·11-s + 2·12-s − 16-s + 2·17-s + 18-s + 2·19-s − 4·22-s + 6·24-s − 2·25-s + 4·27-s + 5·32-s + 8·33-s + 2·34-s − 36-s + 2·38-s − 4·41-s + 8·43-s + 4·44-s + 2·48-s + 10·49-s − 2·50-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 1.15·3-s − 1/2·4-s − 0.816·6-s − 1.06·8-s + 1/3·9-s − 1.20·11-s + 0.577·12-s − 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.458·19-s − 0.852·22-s + 1.22·24-s − 2/5·25-s + 0.769·27-s + 0.883·32-s + 1.39·33-s + 0.342·34-s − 1/6·36-s + 0.324·38-s − 0.624·41-s + 1.21·43-s + 0.603·44-s + 0.288·48-s + 10/7·49-s − 0.282·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8257568917\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8257568917\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02620030027267293647816707089, −9.355894338711399096917542908235, −8.902083907104384842398100564511, −8.312738125827567261208082659778, −7.70109251877832870529048998824, −7.28261519323983315635741168656, −6.45570148983262156095847316778, −5.91921270867214628239046225141, −5.60486434057152358801045736548, −5.01975876943164840903559739842, −4.69790409327146333552953896476, −3.84018274550088006229899004933, −3.17878844714098546612852079072, −2.35109818535381695130055222176, −0.68608367511705435793727716287,
0.68608367511705435793727716287, 2.35109818535381695130055222176, 3.17878844714098546612852079072, 3.84018274550088006229899004933, 4.69790409327146333552953896476, 5.01975876943164840903559739842, 5.60486434057152358801045736548, 5.91921270867214628239046225141, 6.45570148983262156095847316778, 7.28261519323983315635741168656, 7.70109251877832870529048998824, 8.312738125827567261208082659778, 8.902083907104384842398100564511, 9.355894338711399096917542908235, 10.02620030027267293647816707089