Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 83 x^{2} )( 1 + 4 x + 83 x^{2} )$ |
| $1 + 4 x + 166 x^{2} + 332 x^{3} + 6889 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.570451901237$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $270$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7392$ | $49674240$ | $326408610528$ | $2251224634982400$ | $15516483328761979872$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $88$ | $7206$ | $570856$ | $47435822$ | $3939152888$ | $326941791894$ | $27136040573576$ | $2252292156065758$ | $186940256056699288$ | $15516041190363300486$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 270 curves (of which all are hyperelliptic):
- $y^2=24 x^6+20 x^5+61 x^4+45 x^3+34 x^2+4 x+64$
- $y^2=10 x^6+48 x^5+10 x^4+19 x^3+40 x^2+26 x+71$
- $y^2=67 x^6+75 x^5+57 x^4+55 x^3+5 x^2+11 x+66$
- $y^2=18 x^6+23 x^5+14 x^4+77 x^3+14 x^2+23 x+18$
- $y^2=52 x^6+65 x^5+50 x^4+80 x^3+36 x^2+23 x+42$
- $y^2=77 x^6+44 x^5+57 x^4+21 x^3+57 x^2+44 x+77$
- $y^2=30 x^6+30 x^5+38 x^4+15 x^3+38 x^2+30 x+30$
- $y^2=69 x^6+33 x^5+8 x^4+7 x^3+46 x^2+76 x+46$
- $y^2=58 x^6+59 x^5+52 x^4+75 x^3+22 x^2+33 x+27$
- $y^2=75 x^6+56 x^5+76 x^4+49 x^3+72 x^2+79 x+28$
- $y^2=64 x^6+x^5+10 x^4+4 x^3+10 x^2+x+64$
- $y^2=30 x^6+21 x^5+61 x^4+51 x^3+12 x^2+29 x+18$
- $y^2=59 x^6+19 x^5+9 x^4+47 x^3+54 x^2+3 x+15$
- $y^2=40 x^6+65 x^5+44 x^4+59 x^3+76 x^2+8 x+42$
- $y^2=28 x^6+72 x^5+45 x^4+75 x^3+47 x^2+59 x+73$
- $y^2=55 x^6+18 x^5+62 x^4+9 x^3+69 x^2+24 x+18$
- $y^2=25 x^6+66 x^5+2 x^4+52 x^3+55 x^2+38 x+65$
- $y^2=32 x^6+68 x^5+62 x^4+17 x^2+8 x+18$
- $y^2=27 x^6+6 x^5+54 x^4+27 x^3+52 x^2+79 x+38$
- $y^2=20 x^6+28 x^5+19 x^4+75 x^3+19 x^2+28 x+20$
- and 250 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$| The isogeny class factors as 1.83.a $\times$ 1.83.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.fu $\times$ 1.6889.gk. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.ae_gk | $2$ | (not in LMFDB) |