Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 68 x^{2} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.329477325934$, $\pm0.670522674066$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{74}, \sqrt{-210})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $168$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5110$ | $26112100$ | $128099569990$ | $646031005779600$ | $3255243553178527750$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $5178$ | $357912$ | $25422598$ | $1804229352$ | $128098856058$ | $9095120158392$ | $645753573312958$ | $45848500718449032$ | $3255243555347174298$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=26 x^6+69 x^5+13 x^4+23 x^3+23 x^2+26 x+53$
- $y^2=40 x^6+57 x^5+20 x^4+19 x^3+19 x^2+40 x+16$
- $y^2=7 x^6+49 x^5+53 x^4+10 x^3+24 x^2+21 x+31$
- $y^2=49 x^6+59 x^5+16 x^4+70 x^3+26 x^2+5 x+4$
- $y^2=26 x^6+68 x^5+66 x^4+54 x^3+3 x^2+3 x+29$
- $y^2=40 x^6+50 x^5+36 x^4+23 x^3+21 x^2+21 x+61$
- $y^2=58 x^6+55 x^4+2 x^3+36 x^2+49 x+44$
- $y^2=51 x^6+30 x^4+14 x^3+39 x^2+59 x+24$
- $y^2=31 x^6+3 x^4+48 x^3+14 x^2+7 x+29$
- $y^2=4 x^6+21 x^4+52 x^3+27 x^2+49 x+61$
- $y^2=47 x^6+33 x^5+x^4+3 x^3+66 x^2+59 x+16$
- $y^2=45 x^6+18 x^5+7 x^4+21 x^3+36 x^2+58 x+41$
- $y^2=51 x^6+16 x^5+39 x^4+42 x^3+45 x^2+5 x+26$
- $y^2=2 x^6+41 x^5+60 x^4+10 x^3+31 x^2+35 x+40$
- $y^2=6 x^6+41 x^5+2 x^4+68 x^3+53 x^2+41 x+23$
- $y^2=42 x^6+3 x^5+14 x^4+50 x^3+16 x^2+3 x+19$
- $y^2=55 x^6+28 x^5+68 x^4+54 x^3+67 x^2+64 x+67$
- $y^2=30 x^6+54 x^5+50 x^4+23 x^3+43 x^2+22 x+43$
- $y^2=11 x^6+25 x^5+50 x^4+19 x^3+44 x^2+68 x+65$
- $y^2=6 x^6+33 x^5+66 x^4+62 x^3+24 x^2+50 x+29$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{74}, \sqrt{-210})\). |
| The base change of $A$ to $\F_{71^{2}}$ is 1.5041.cq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3885}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.a_acq | $4$ | (not in LMFDB) |