L(s) = 1 | + 2-s − 4-s − 7-s − 3·8-s − 2·11-s − 14-s − 16-s − 2·22-s + 2·23-s + 6·25-s + 28-s + 4·29-s + 5·32-s − 12·37-s + 8·43-s + 2·44-s + 2·46-s + 49-s + 6·50-s − 8·53-s + 3·56-s + 4·58-s + 7·64-s − 4·67-s − 18·71-s − 12·74-s + 2·77-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 0.377·7-s − 1.06·8-s − 0.603·11-s − 0.267·14-s − 1/4·16-s − 0.426·22-s + 0.417·23-s + 6/5·25-s + 0.188·28-s + 0.742·29-s + 0.883·32-s − 1.97·37-s + 1.21·43-s + 0.301·44-s + 0.294·46-s + 1/7·49-s + 0.848·50-s − 1.09·53-s + 0.400·56-s + 0.525·58-s + 7/8·64-s − 0.488·67-s − 2.13·71-s − 1.39·74-s + 0.227·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1778112 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1778112 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.46102221902758854869120286881, −7.16734735530465989728847896423, −6.71685270792997725370193186332, −6.15596140986549181052076649785, −5.85970010218057747254524603782, −5.37766946984049606642364240765, −4.84984327244365570111641729968, −4.64243173452062790099152067411, −4.10797839823755629352669156225, −3.44365101072817236010159430813, −3.04819709247241956913357401999, −2.73611730065490843783404941246, −1.85986834483438245559443500790, −0.955992047237992522914592536688, 0,
0.955992047237992522914592536688, 1.85986834483438245559443500790, 2.73611730065490843783404941246, 3.04819709247241956913357401999, 3.44365101072817236010159430813, 4.10797839823755629352669156225, 4.64243173452062790099152067411, 4.84984327244365570111641729968, 5.37766946984049606642364240765, 5.85970010218057747254524603782, 6.15596140986549181052076649785, 6.71685270792997725370193186332, 7.16734735530465989728847896423, 7.46102221902758854869120286881