Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 4 x + 71 x^{2} )( 1 + 14 x + 71 x^{2} )$ |
$1 + 18 x + 198 x^{2} + 1278 x^{3} + 5041 x^{4}$ | |
Frobenius angles: | $\pm0.576280895962$, $\pm0.812086478560$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $72$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6536$ | $25777984$ | $127733969576$ | $645788405377024$ | $3255235786222668776$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $90$ | $5114$ | $356886$ | $25413054$ | $1804225050$ | $128101037978$ | $9095110855830$ | $645753547970494$ | $45848501317313946$ | $3255243545006293754$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=8 x^6+9 x^5+3 x^4+46 x^3+51 x^2+35 x+19$
- $y^2=59 x^6+60 x^5+44 x^4+32 x^3+28 x^2+2 x+63$
- $y^2=15 x^6+67 x^5+68 x^4+67 x^3+14 x^2+70 x+21$
- $y^2=51 x^6+69 x^5+6 x^4+19 x^3+63 x^2+50 x+12$
- $y^2=57 x^6+36 x^5+18 x^4+43 x^3+x^2+21 x+53$
- $y^2=59 x^6+49 x^5+2 x^4+12 x^3+49 x^2+48 x+23$
- $y^2=30 x^6+62 x^5+57 x^4+2 x^3+4 x^2+69 x+67$
- $y^2=10 x^6+39 x^5+x^4+45 x^3+48 x^2+41 x+24$
- $y^2=63 x^6+42 x^5+45 x^4+47 x^3+35 x^2+13 x+5$
- $y^2=13 x^6+35 x^5+59 x^4+18 x^3+35 x^2+68 x+36$
- $y^2=46 x^6+38 x^5+35 x^4+50 x^3+17 x^2+55 x+4$
- $y^2=8 x^6+3 x^5+58 x^3+28 x^2+63 x+1$
- $y^2=27 x^6+36 x^5+21 x^4+27 x^3+17 x^2+12 x+58$
- $y^2=54 x^6+61 x^5+20 x^4+16 x^3+20 x^2+23 x+2$
- $y^2=12 x^6+67 x^5+19 x^4+38 x^3+45 x^2+21 x$
- $y^2=12 x^6+68 x^5+22 x^4+27 x^3+37 x^2+54 x+12$
- $y^2=43 x^6+47 x^5+55 x^4+13 x^3+66 x^2+41 x+29$
- $y^2=15 x^6+20 x^5+60 x^4+37 x^3+26 x^2+6 x+58$
- $y^2=69 x^6+19 x^5+49 x^4+8 x^3+8 x^2+4$
- $y^2=21 x^6+22 x^5+42 x^4+3 x^3+20 x^2+63 x+39$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The isogeny class factors as 1.71.e $\times$ 1.71.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.as_hq | $2$ | (not in LMFDB) |
2.71.ak_di | $2$ | (not in LMFDB) |
2.71.k_di | $2$ | (not in LMFDB) |