-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 6536, 'abvar_counts': [6536, 25777984, 127733969576, 645788405377024, 3255235786222668776, 16409779335747246280000, 82721126087689170881345096, 416997633916426058657746550784, 2102085045586679929624950873031496, 10596610556848281725035997634310897984], 'abvar_counts_str': '6536 25777984 127733969576 645788405377024 3255235786222668776 16409779335747246280000 82721126087689170881345096 416997633916426058657746550784 2102085045586679929624950873031496 10596610556848281725035997634310897984 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.576280895962489, 0.812086478559918], 'center_dim': 4, 'cohen_macaulay_max': 2, 'curve_count': 90, 'curve_counts': [90, 5114, 356886, 25413054, 1804225050, 128101037978, 9095110855830, 645753547970494, 45848501317313946, 3255243545006293754], 'curve_counts_str': '90 5114 356886 25413054 1804225050 128101037978 9095110855830 645753547970494 45848501317313946 3255243545006293754 ', 'curves': ['y^2=8*x^6+9*x^5+3*x^4+46*x^3+51*x^2+35*x+19', 'y^2=59*x^6+60*x^5+44*x^4+32*x^3+28*x^2+2*x+63', 'y^2=15*x^6+67*x^5+68*x^4+67*x^3+14*x^2+70*x+21', 'y^2=51*x^6+69*x^5+6*x^4+19*x^3+63*x^2+50*x+12', 'y^2=57*x^6+36*x^5+18*x^4+43*x^3+x^2+21*x+53', 'y^2=59*x^6+49*x^5+2*x^4+12*x^3+49*x^2+48*x+23', 'y^2=30*x^6+62*x^5+57*x^4+2*x^3+4*x^2+69*x+67', 'y^2=10*x^6+39*x^5+x^4+45*x^3+48*x^2+41*x+24', 'y^2=63*x^6+42*x^5+45*x^4+47*x^3+35*x^2+13*x+5', 'y^2=13*x^6+35*x^5+59*x^4+18*x^3+35*x^2+68*x+36', 'y^2=46*x^6+38*x^5+35*x^4+50*x^3+17*x^2+55*x+4', 'y^2=8*x^6+3*x^5+58*x^3+28*x^2+63*x+1', 'y^2=27*x^6+36*x^5+21*x^4+27*x^3+17*x^2+12*x+58', 'y^2=54*x^6+61*x^5+20*x^4+16*x^3+20*x^2+23*x+2', 'y^2=12*x^6+67*x^5+19*x^4+38*x^3+45*x^2+21*x', 'y^2=12*x^6+68*x^5+22*x^4+27*x^3+37*x^2+54*x+12', 'y^2=43*x^6+47*x^5+55*x^4+13*x^3+66*x^2+41*x+29', 'y^2=15*x^6+20*x^5+60*x^4+37*x^3+26*x^2+6*x+58', 'y^2=69*x^6+19*x^5+49*x^4+8*x^3+8*x^2+4', 'y^2=21*x^6+22*x^5+42*x^4+3*x^3+20*x^2+63*x+39', 'y^2=66*x^6+42*x^5+69*x^4+64*x^3+23*x^2+60*x+38', 'y^2=55*x^6+8*x^5+41*x^4+47*x^3+21*x^2+29*x+18', 'y^2=3*x^6+9*x^5+47*x^4+66*x^3+6*x^2+31*x+1', 'y^2=47*x^6+29*x^5+7*x^4+60*x^3+23*x^2+37*x+10', 'y^2=50*x^6+48*x^5+35*x^4+60*x^3+x^2+20*x+48', 'y^2=30*x^6+63*x^5+67*x^4+45*x^3+48*x^2+64*x+24', 'y^2=30*x^6+46*x^5+21*x^4+62*x^3+66*x^2+53*x+5', 'y^2=5*x^6+28*x^5+3*x^4+27*x^3+43*x^2+26*x+1', 'y^2=22*x^6+48*x^5+63*x^4+18*x^3+55*x^2+47*x+46', 'y^2=33*x^6+59*x^5+28*x^4+28*x^3+3*x^2+24*x+20', 'y^2=49*x^6+12*x^5+3*x^4+50*x^3+13*x^2+6*x+4', 'y^2=46*x^6+62*x^5+26*x^4+63*x^3+39*x^2+x+50', 'y^2=20*x^6+9*x^5+58*x^4+48*x^3+18*x^2+49*x+40', 'y^2=67*x^6+11*x^5+61*x^4+13*x^3+32*x^2+28*x+62', 'y^2=54*x^6+54*x^5+5*x^4+25*x^3+19*x^2+70*x+58', 'y^2=34*x^6+9*x^5+26*x^4+45*x^3+28*x^2+38*x+19', 'y^2=59*x^6+7*x^5+30*x^4+24*x^3+30*x^2+7*x+59', 'y^2=20*x^6+57*x^5+68*x^4+x^3+70*x^2+57*x+27', 'y^2=3*x^6+68*x^5+14*x^4+38*x^3+14*x^2+68*x+3', 'y^2=56*x^6+12*x^5+48*x^4+54*x^3+60*x^2+x+33', 'y^2=60*x^6+12*x^5+2*x^4+70*x^3+69*x^2+35*x+10', 'y^2=56*x^6+16*x^5+40*x^4+2*x^3+51*x^2+47*x+10', 'y^2=2*x^6+37*x^5+66*x^4+42*x^3+66*x^2+53*x+6', 'y^2=6*x^6+57*x^5+16*x^4+2*x^3+53*x^2+33*x+53', 'y^2=27*x^6+33*x^5+38*x^4+8*x^3+24*x^2+27*x+25', 'y^2=39*x^6+36*x^5+56*x^4+59*x^3+7*x^2+19*x+27', 'y^2=32*x^6+34*x^5+35*x^4+47*x^3+48*x^2+x+40', 'y^2=32*x^6+2*x^5+5*x^4+52*x^3+43*x^2+10*x+23', 'y^2=24*x^6+58*x^5+39*x^4+49*x^3+39*x^2+58*x+24', 'y^2=51*x^6+34*x^5+37*x^4+13*x^3+25*x^2+8*x+46', 'y^2=26*x^6+30*x^5+28*x^4+18*x^3+28*x^2+30*x+26', 'y^2=27*x^6+70*x^5+42*x^4+15*x^3+51*x^2+55*x+45', 'y^2=4*x^5+69*x^4+31*x^3+43*x+50', 'y^2=36*x^6+28*x^5+20*x^4+34*x^3+46*x^2+50*x+8', 'y^2=24*x^6+54*x^5+10*x^4+37*x^3+5*x^2+51*x+36', 'y^2=62*x^6+37*x^5+29*x^4+x^3+58*x^2+64*x+18', 'y^2=41*x^6+24*x^5+16*x^4+66*x^3+17*x^2+42*x+23', 'y^2=43*x^6+31*x^5+49*x^4+45*x^3+25*x^2+17*x+1', 'y^2=13*x^6+10*x^5+19*x^4+27*x^3+8*x^2+11*x+63', 'y^2=34*x^6+44*x^5+58*x^4+35*x^3+18*x^2+18*x+63', 'y^2=49*x^6+53*x^5+2*x^4+3*x^3+30*x^2+6*x+31', 'y^2=32*x^6+9*x^5+36*x^4+41*x^3+43*x^2+46*x+56', 'y^2=34*x^6+x^5+46*x^4+45*x^3+69*x^2+18*x+18', 'y^2=32*x^6+19*x^5+2*x^4+70*x^3+45*x^2+46*x+39', 'y^2=54*x^6+24*x^5+36*x^4+29*x^3+18*x^2+67*x+45', 'y^2=x^6+26*x^5+39*x^4+56*x^3+33*x^2+62*x+30', 'y^2=36*x^6+15*x^5+25*x^4+27*x^3+66*x^2+19*x+15', 'y^2=43*x^6+66*x^5+69*x^4+x^3+37*x^2+64*x+11', 'y^2=13*x^6+60*x^5+61*x^4+2*x^3+35*x^2+25*x+55', 'y^2=9*x^6+64*x^5+36*x^4+11*x^3+36*x^2+64*x+9', 'y^2=70*x^6+17*x^5+50*x^4+47*x^3+11*x^2+36*x+2', 'y^2=54*x^6+50*x^5+11*x^4+6*x^3+11*x^2+50*x+54'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.67.1', '2.0.88.1'], 'geometric_splitting_field': '4.0.34762816.1', 'geometric_splitting_polynomials': [[47, -78, 79, -2, 1]], 'group_structure_count': 3, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 72, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 72, 'label': '2.71.s_hq', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.67.1', '2.0.88.1'], 'p': 71, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, 18, 198, 1278, 5041], 'poly_str': '1 18 198 1278 5041 ', 'primitive_models': [], 'q': 71, 'real_poly': [1, 18, 56], 'simple_distinct': ['1.71.e', '1.71.o'], 'simple_factors': ['1.71.eA', '1.71.oA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['2,F+1', '5,7*F^2+12*V+515'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.34762816.1', 'splitting_polynomials': [[47, -78, 79, -2, 1]], 'twist_count': 4, 'twists': [['2.71.as_hq', '2.5041.cu_ewc', 2], ['2.71.ak_di', '2.5041.cu_ewc', 2], ['2.71.k_di', '2.5041.cu_ewc', 2]], 'weak_equivalence_count': 10, 'zfv_index': 200, 'zfv_index_factorization': [[2, 3], [5, 2]], 'zfv_is_bass': False, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 23584, 'zfv_singular_count': 4, 'zfv_singular_primes': ['2,F+1', '5,7*F^2+12*V+515']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 75746
{'base_label': '2.71.s_hq', 'extension_degree': 1, 'extension_label': '1.71.e', 'multiplicity': 1}
-
id: 75747
{'base_label': '2.71.s_hq', 'extension_degree': 1, 'extension_label': '1.71.o', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.67.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.71.e', 'galois_group': '2T1', 'places': [['36', '1'], ['34', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.88.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.71.o', 'galois_group': '2T1', 'places': [['7', '1'], ['64', '1']]}