# Stored data for abelian variety isogeny class 2.71.s_hq, downloaded from the LMFDB on 04 September 2025. {"abvar_count": 6536, "abvar_counts": [6536, 25777984, 127733969576, 645788405377024, 3255235786222668776, 16409779335747246280000, 82721126087689170881345096, 416997633916426058657746550784, 2102085045586679929624950873031496, 10596610556848281725035997634310897984], "abvar_counts_str": "6536 25777984 127733969576 645788405377024 3255235786222668776 16409779335747246280000 82721126087689170881345096 416997633916426058657746550784 2102085045586679929624950873031496 10596610556848281725035997634310897984 ", "angle_corank": 0, "angle_rank": 2, "angles": [0.576280895962489, 0.812086478559918], "center_dim": 4, "cohen_macaulay_max": 2, "curve_count": 90, "curve_counts": [90, 5114, 356886, 25413054, 1804225050, 128101037978, 9095110855830, 645753547970494, 45848501317313946, 3255243545006293754], "curve_counts_str": "90 5114 356886 25413054 1804225050 128101037978 9095110855830 645753547970494 45848501317313946 3255243545006293754 ", "curves": ["y^2=8*x^6+9*x^5+3*x^4+46*x^3+51*x^2+35*x+19", "y^2=59*x^6+60*x^5+44*x^4+32*x^3+28*x^2+2*x+63", "y^2=15*x^6+67*x^5+68*x^4+67*x^3+14*x^2+70*x+21", "y^2=51*x^6+69*x^5+6*x^4+19*x^3+63*x^2+50*x+12", "y^2=57*x^6+36*x^5+18*x^4+43*x^3+x^2+21*x+53", "y^2=59*x^6+49*x^5+2*x^4+12*x^3+49*x^2+48*x+23", "y^2=30*x^6+62*x^5+57*x^4+2*x^3+4*x^2+69*x+67", "y^2=10*x^6+39*x^5+x^4+45*x^3+48*x^2+41*x+24", "y^2=63*x^6+42*x^5+45*x^4+47*x^3+35*x^2+13*x+5", "y^2=13*x^6+35*x^5+59*x^4+18*x^3+35*x^2+68*x+36", "y^2=46*x^6+38*x^5+35*x^4+50*x^3+17*x^2+55*x+4", "y^2=8*x^6+3*x^5+58*x^3+28*x^2+63*x+1", "y^2=27*x^6+36*x^5+21*x^4+27*x^3+17*x^2+12*x+58", "y^2=54*x^6+61*x^5+20*x^4+16*x^3+20*x^2+23*x+2", "y^2=12*x^6+67*x^5+19*x^4+38*x^3+45*x^2+21*x", "y^2=12*x^6+68*x^5+22*x^4+27*x^3+37*x^2+54*x+12", "y^2=43*x^6+47*x^5+55*x^4+13*x^3+66*x^2+41*x+29", "y^2=15*x^6+20*x^5+60*x^4+37*x^3+26*x^2+6*x+58", "y^2=69*x^6+19*x^5+49*x^4+8*x^3+8*x^2+4", "y^2=21*x^6+22*x^5+42*x^4+3*x^3+20*x^2+63*x+39", "y^2=66*x^6+42*x^5+69*x^4+64*x^3+23*x^2+60*x+38", "y^2=55*x^6+8*x^5+41*x^4+47*x^3+21*x^2+29*x+18", "y^2=3*x^6+9*x^5+47*x^4+66*x^3+6*x^2+31*x+1", "y^2=47*x^6+29*x^5+7*x^4+60*x^3+23*x^2+37*x+10", "y^2=50*x^6+48*x^5+35*x^4+60*x^3+x^2+20*x+48", "y^2=30*x^6+63*x^5+67*x^4+45*x^3+48*x^2+64*x+24", "y^2=30*x^6+46*x^5+21*x^4+62*x^3+66*x^2+53*x+5", "y^2=5*x^6+28*x^5+3*x^4+27*x^3+43*x^2+26*x+1", "y^2=22*x^6+48*x^5+63*x^4+18*x^3+55*x^2+47*x+46", "y^2=33*x^6+59*x^5+28*x^4+28*x^3+3*x^2+24*x+20", "y^2=49*x^6+12*x^5+3*x^4+50*x^3+13*x^2+6*x+4", "y^2=46*x^6+62*x^5+26*x^4+63*x^3+39*x^2+x+50", "y^2=20*x^6+9*x^5+58*x^4+48*x^3+18*x^2+49*x+40", "y^2=67*x^6+11*x^5+61*x^4+13*x^3+32*x^2+28*x+62", "y^2=54*x^6+54*x^5+5*x^4+25*x^3+19*x^2+70*x+58", "y^2=34*x^6+9*x^5+26*x^4+45*x^3+28*x^2+38*x+19", "y^2=59*x^6+7*x^5+30*x^4+24*x^3+30*x^2+7*x+59", "y^2=20*x^6+57*x^5+68*x^4+x^3+70*x^2+57*x+27", "y^2=3*x^6+68*x^5+14*x^4+38*x^3+14*x^2+68*x+3", "y^2=56*x^6+12*x^5+48*x^4+54*x^3+60*x^2+x+33", "y^2=60*x^6+12*x^5+2*x^4+70*x^3+69*x^2+35*x+10", "y^2=56*x^6+16*x^5+40*x^4+2*x^3+51*x^2+47*x+10", "y^2=2*x^6+37*x^5+66*x^4+42*x^3+66*x^2+53*x+6", "y^2=6*x^6+57*x^5+16*x^4+2*x^3+53*x^2+33*x+53", "y^2=27*x^6+33*x^5+38*x^4+8*x^3+24*x^2+27*x+25", "y^2=39*x^6+36*x^5+56*x^4+59*x^3+7*x^2+19*x+27", "y^2=32*x^6+34*x^5+35*x^4+47*x^3+48*x^2+x+40", "y^2=32*x^6+2*x^5+5*x^4+52*x^3+43*x^2+10*x+23", "y^2=24*x^6+58*x^5+39*x^4+49*x^3+39*x^2+58*x+24", "y^2=51*x^6+34*x^5+37*x^4+13*x^3+25*x^2+8*x+46", "y^2=26*x^6+30*x^5+28*x^4+18*x^3+28*x^2+30*x+26", "y^2=27*x^6+70*x^5+42*x^4+15*x^3+51*x^2+55*x+45", "y^2=4*x^5+69*x^4+31*x^3+43*x+50", "y^2=36*x^6+28*x^5+20*x^4+34*x^3+46*x^2+50*x+8", "y^2=24*x^6+54*x^5+10*x^4+37*x^3+5*x^2+51*x+36", "y^2=62*x^6+37*x^5+29*x^4+x^3+58*x^2+64*x+18", "y^2=41*x^6+24*x^5+16*x^4+66*x^3+17*x^2+42*x+23", "y^2=43*x^6+31*x^5+49*x^4+45*x^3+25*x^2+17*x+1", "y^2=13*x^6+10*x^5+19*x^4+27*x^3+8*x^2+11*x+63", "y^2=34*x^6+44*x^5+58*x^4+35*x^3+18*x^2+18*x+63", "y^2=49*x^6+53*x^5+2*x^4+3*x^3+30*x^2+6*x+31", "y^2=32*x^6+9*x^5+36*x^4+41*x^3+43*x^2+46*x+56", "y^2=34*x^6+x^5+46*x^4+45*x^3+69*x^2+18*x+18", "y^2=32*x^6+19*x^5+2*x^4+70*x^3+45*x^2+46*x+39", "y^2=54*x^6+24*x^5+36*x^4+29*x^3+18*x^2+67*x+45", "y^2=x^6+26*x^5+39*x^4+56*x^3+33*x^2+62*x+30", "y^2=36*x^6+15*x^5+25*x^4+27*x^3+66*x^2+19*x+15", "y^2=43*x^6+66*x^5+69*x^4+x^3+37*x^2+64*x+11", "y^2=13*x^6+60*x^5+61*x^4+2*x^3+35*x^2+25*x+55", "y^2=9*x^6+64*x^5+36*x^4+11*x^3+36*x^2+64*x+9", "y^2=70*x^6+17*x^5+50*x^4+47*x^3+11*x^2+36*x+2", "y^2=54*x^6+50*x^5+11*x^4+6*x^3+11*x^2+50*x+54"], "dim1_distinct": 2, "dim1_factors": 2, "dim2_distinct": 0, "dim2_factors": 0, "dim3_distinct": 0, "dim3_factors": 0, "dim4_distinct": 0, "dim4_factors": 0, "dim5_distinct": 0, "dim5_factors": 0, "endomorphism_ring_count": 8, "g": 2, "galois_groups": ["2T1", "2T1"], "geom_dim1_distinct": 2, "geom_dim1_factors": 2, "geom_dim2_distinct": 0, "geom_dim2_factors": 0, "geom_dim3_distinct": 0, "geom_dim3_factors": 0, "geom_dim4_distinct": 0, "geom_dim4_factors": 0, "geom_dim5_distinct": 0, "geom_dim5_factors": 0, "geometric_center_dim": 4, "geometric_extension_degree": 1, "geometric_galois_groups": ["2T1", "2T1"], "geometric_number_fields": ["2.0.67.1", "2.0.88.1"], "geometric_splitting_field": "4.0.34762816.1", "geometric_splitting_polynomials": [[47, -78, 79, -2, 1]], "group_structure_count": 3, "has_geom_ss_factor": false, "has_jacobian": 1, "has_principal_polarization": 1, "hyp_count": 72, "is_geometrically_simple": false, "is_geometrically_squarefree": true, "is_primitive": true, "is_simple": false, "is_squarefree": true, "is_supersingular": false, "jacobian_count": 72, "label": "2.71.s_hq", "max_divalg_dim": 1, "max_geom_divalg_dim": 1, "max_twist_degree": 2, "newton_coelevation": 2, "newton_elevation": 0, "number_fields": ["2.0.67.1", "2.0.88.1"], "p": 71, "p_rank": 2, "p_rank_deficit": 0, "poly": [1, 18, 198, 1278, 5041], "poly_str": "1 18 198 1278 5041 ", "primitive_models": [], "q": 71, "real_poly": [1, 18, 56], "simple_distinct": ["1.71.e", "1.71.o"], "simple_factors": ["1.71.eA", "1.71.oA"], "simple_multiplicities": [1, 1], "singular_primes": ["2,F+1", "5,7*F^2+12*V+515"], "slopes": ["0A", "0B", "1A", "1B"], "splitting_field": "4.0.34762816.1", "splitting_polynomials": [[47, -78, 79, -2, 1]], "twist_count": 4, "twists": [["2.71.as_hq", "2.5041.cu_ewc", 2], ["2.71.ak_di", "2.5041.cu_ewc", 2], ["2.71.k_di", "2.5041.cu_ewc", 2]], "weak_equivalence_count": 10, "zfv_index": 200, "zfv_index_factorization": [[2, 3], [5, 2]], "zfv_is_bass": false, "zfv_is_maximal": false, "zfv_plus_index": 1, "zfv_plus_index_factorization": [], "zfv_plus_norm": 23584, "zfv_singular_count": 4, "zfv_singular_primes": ["2,F+1", "5,7*F^2+12*V+515"]}