Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 54 x^{2} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.152604471177$, $\pm0.847395528823$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-10}, \sqrt{37})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $66$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2156$ | $4648336$ | $10779415724$ | $23825957241856$ | $52599132198341036$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $48$ | $2102$ | $103824$ | $4882686$ | $229345008$ | $10779616118$ | $506623120464$ | $23811301668478$ | $1119130473102768$ | $52599132160852022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):
- $y^2=25 x^6+19 x^5+27 x^4+3 x^3+31 x^2+46 x+41$
- $y^2=44 x^6+36 x^5+2 x^4+39 x^3+22 x^2+32 x+2$
- $y^2=29 x^6+24 x^5+31 x^4+15 x^3+9 x^2+12 x+8$
- $y^2=45 x^6+10 x^5+42 x^4+23 x^3+15 x^2+37 x+42$
- $y^2=37 x^6+3 x^5+22 x^4+21 x^3+28 x^2+44 x+22$
- $y^2=17 x^5+3 x^4+36 x^3+44 x^2+14 x+37$
- $y^2=38 x^5+15 x^4+39 x^3+32 x^2+23 x+44$
- $y^2=10 x^6+41 x^5+37 x^4+44 x^3+10 x^2+9 x+40$
- $y^2=3 x^6+17 x^5+44 x^4+32 x^3+3 x^2+45 x+12$
- $y^2=38 x^6+15 x^5+27 x^4+x^3+30 x^2+22 x+1$
- $y^2=38 x^6+40 x^5+7 x^4+34 x^3+35 x^2+16 x+10$
- $y^2=2 x^6+12 x^5+35 x^4+29 x^3+34 x^2+33 x+3$
- $y^2=42 x^6+43 x^5+21 x^4+16 x^3+19 x^2+35 x+44$
- $y^2=22 x^6+27 x^5+11 x^4+33 x^3+x^2+34 x+32$
- $y^2=20 x^6+19 x^5+44 x^4+24 x^3+17 x^2+22 x+34$
- $y^2=6 x^6+x^5+32 x^4+26 x^3+38 x^2+16 x+29$
- $y^2=32 x^6+15 x^5+28 x^4+25 x^3+6 x^2+35 x+38$
- $y^2=19 x^6+28 x^5+46 x^4+31 x^3+30 x^2+34 x+2$
- $y^2=2 x^6+8 x^5+4 x^4+28 x^3+42 x^2+9 x+14$
- $y^2=10 x^6+40 x^5+20 x^4+46 x^3+22 x^2+45 x+23$
- and 46 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47^{2}}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-10}, \sqrt{37})\). |
| The base change of $A$ to $\F_{47^{2}}$ is 1.2209.acc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-370}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.a_cc | $4$ | (not in LMFDB) |