Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 4 x + 79 x^{2} )( 1 + 16 x + 79 x^{2} )$ |
| $1 + 12 x + 94 x^{2} + 948 x^{3} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.427756044762$, $\pm0.856485067356$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $404$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7296$ | $39223296$ | $243674441856$ | $1516921749504000$ | $9467751063847456896$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $92$ | $6286$ | $494228$ | $38945278$ | $3076885772$ | $243088553806$ | $19203908985668$ | $1517108898410878$ | $119851594944328892$ | $9468276079912990606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 404 curves (of which all are hyperelliptic):
- $y^2=9 x^6+68 x^5+4 x^4+50 x^3+44 x^2+59 x+34$
- $y^2=38 x^6+43 x^5+53 x^4+32 x^3+18 x^2+40 x+1$
- $y^2=77 x^6+37 x^5+37 x^4+51 x^3+57 x^2+27 x+76$
- $y^2=20 x^6+x^5+37 x^4+47 x^3+66 x+20$
- $y^2=77 x^6+49 x^5+24 x^4+10 x^3+44 x^2+70 x+47$
- $y^2=22 x^6+24 x^5+31 x^4+76 x^3+28 x^2+78 x+32$
- $y^2=44 x^6+62 x^5+31 x^4+70 x^3+38 x^2+16 x+43$
- $y^2=66 x^6+38 x^5+3 x^4+19 x^3+x^2+74 x+5$
- $y^2=35 x^6+10 x^5+9 x^4+45 x^3+35 x^2+46 x+8$
- $y^2=41 x^6+30 x^5+3 x^4+5 x^3+49 x^2+13 x+21$
- $y^2=50 x^6+57 x^5+62 x^4+28 x^3+62 x^2+57 x+50$
- $y^2=x^6+75 x^5+42 x^4+26 x^3+42 x^2+75 x+1$
- $y^2=26 x^6+x^5+28 x^4+13 x^3+53 x^2+19 x+4$
- $y^2=61 x^6+76 x^5+11 x^4+36 x^3+30 x^2+43 x+47$
- $y^2=18 x^6+51 x^5+43 x^4+60 x^3+50 x^2+68 x+16$
- $y^2=71 x^6+49 x^5+61 x^4+60 x^3+76 x^2+38 x+23$
- $y^2=44 x^6+x^5+46 x^4+11 x^3+57 x^2+68 x+8$
- $y^2=63 x^6+8 x^5+61 x^4+27 x^3+33 x^2+62 x+43$
- $y^2=40 x^6+10 x^5+29 x^4+15 x^3+59 x^2+22 x+13$
- $y^2=10 x^5+73 x^4+55 x^3+60 x^2+35 x+26$
- and 384 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.ae $\times$ 1.79.q and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.