Properties

Label 2.67.e_dy
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 67 x^{2} )( 1 + 8 x + 67 x^{2} )$
  $1 + 4 x + 102 x^{2} + 268 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.421429069538$, $\pm0.662520626193$
Angle rank:  $2$ (numerical)
Jacobians:  $564$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4864$ $21012480$ $90351100672$ $406050206515200$ $1822799250248821504$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $72$ $4678$ $300408$ $20150254$ $1350096552$ $90457836406$ $6060718531800$ $406067717068126$ $27206533806201096$ $1822837803475604518$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 564 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The isogeny class factors as 1.67.ae $\times$ 1.67.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.am_gk$2$(not in LMFDB)
2.67.ae_dy$2$(not in LMFDB)
2.67.m_gk$2$(not in LMFDB)