| L(s) = 1 | + 2-s + 4-s − 5-s + 8-s − 2·9-s − 10-s − 3·13-s + 16-s − 16·17-s − 2·18-s − 20-s − 2·25-s − 3·26-s + 6·29-s + 32-s − 16·34-s − 2·36-s + 2·37-s − 40-s − 3·41-s + 2·45-s − 10·49-s − 2·50-s − 3·52-s − 8·53-s + 6·58-s + 22·61-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.353·8-s − 2/3·9-s − 0.316·10-s − 0.832·13-s + 1/4·16-s − 3.88·17-s − 0.471·18-s − 0.223·20-s − 2/5·25-s − 0.588·26-s + 1.11·29-s + 0.176·32-s − 2.74·34-s − 1/3·36-s + 0.328·37-s − 0.158·40-s − 0.468·41-s + 0.298·45-s − 1.42·49-s − 0.282·50-s − 0.416·52-s − 1.09·53-s + 0.787·58-s + 2.81·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.445434149175178190534837201998, −8.826171809610314934244672989252, −8.408102154869648800813162339473, −8.082837341209114977953459495489, −7.11020074319077968499505533310, −6.89588461251742922722045775042, −6.40684447171308426551470593506, −5.84469969914031163846408617398, −4.98761585783446167262346255987, −4.55517410065217358457151523105, −4.23734767472938567260362670711, −3.30314266254156899036223991684, −2.51928222123784599091347165996, −2.05221934148470250098572163466, 0,
2.05221934148470250098572163466, 2.51928222123784599091347165996, 3.30314266254156899036223991684, 4.23734767472938567260362670711, 4.55517410065217358457151523105, 4.98761585783446167262346255987, 5.84469969914031163846408617398, 6.40684447171308426551470593506, 6.89588461251742922722045775042, 7.11020074319077968499505533310, 8.082837341209114977953459495489, 8.408102154869648800813162339473, 8.826171809610314934244672989252, 9.445434149175178190534837201998