Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 61 x^{2} )( 1 - 10 x + 61 x^{2} )$ |
| $1 - 22 x + 242 x^{2} - 1342 x^{3} + 3721 x^{4}$ | |
| Frobenius angles: | $\pm0.221142061624$, $\pm0.278857938376$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $25$ |
| Isomorphism classes: | 88 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2600$ | $13852800$ | $51815839400$ | $191900067840000$ | $713405328370865000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $40$ | $3722$ | $228280$ | $13859758$ | $844670200$ | $51520374362$ | $3142738798120$ | $191707271553118$ | $11694145883260360$ | $713342911662882602$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 25 curves (of which all are hyperelliptic):
- $y^2=23 x^6+46 x^5+13 x^4+29 x^3+16 x^2+39 x+24$
- $y^2=35 x^6+29 x^5+55 x^4+33 x^3+55 x^2+29 x+35$
- $y^2=32 x^6+18 x^5+15 x^4+33 x^3+39 x^2+7 x+31$
- $y^2=14 x^6+17 x^5+46 x^4+3 x^3+12 x^2+6 x+47$
- $y^2=43 x^6+47 x^5+43 x^4+32 x^3+30 x^2+56 x+2$
- $y^2=49 x^6+34 x^5+19 x^4+43 x^3+34 x^2+57 x+25$
- $y^2=30 x^6+57 x^5+49 x^4+6 x^3+49 x^2+57 x+30$
- $y^2=21 x^6+25 x^5+16 x^4+31 x^3+39 x^2+12 x+2$
- $y^2=55 x^6+11 x^5+6 x^3+11 x+6$
- $y^2=38 x^6+x^5+23 x^4+6 x^3+38 x^2+x+23$
- $y^2=29 x^6+37 x^5+28 x^4+8 x^3+10 x^2+43 x+35$
- $y^2=19 x^6+38 x^5+18 x^4+40 x^3+30 x^2+31 x+36$
- $y^2=58 x^6+25 x^5+38 x^4+35 x^3+54 x^2+15 x+9$
- $y^2=13 x^6+4 x^5+42 x^4+49 x^3+57 x^2+36 x+15$
- $y^2=31 x^6+12 x^5+24 x^4+60 x^3+24 x^2+12 x+31$
- $y^2=53 x^6+26 x^5+27 x^4+21 x^3+14 x^2+50 x+24$
- $y^2=21 x^6+43 x^5+25 x^4+39 x^3+25 x^2+43 x+21$
- $y^2=59 x^6+15 x^5+38 x^4+26 x^3+38 x^2+15 x+59$
- $y^2=35 x^6+8 x^5+30 x^4+3 x^3+30 x^2+8 x+35$
- $y^2=7 x^6+45 x^5+55 x^4+48 x^3+24 x^2+49 x+40$
- $y^2=25 x^6+59 x^5+57 x^4+15 x^3+57 x^2+59 x+25$
- $y^2=23 x^6+47 x^5+26 x^4+16 x^3+11 x^2+15 x+37$
- $y^2=44 x^6+3 x^5+25 x^4+35 x^3+14 x^2+27 x+29$
- $y^2=3 x^6+3 x^5+39 x^4+27 x^3+58 x^2+39 x+58$
- $y^2=31 x^6+37 x^5+53 x^4+41 x^3+26 x^2+21 x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61^{4}}$.
Endomorphism algebra over $\F_{61}$| The isogeny class factors as 1.61.am $\times$ 1.61.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{61^{4}}$ is 1.13845841.khq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
- Endomorphism algebra over $\F_{61^{2}}$
The base change of $A$ to $\F_{61^{2}}$ is 1.3721.aw $\times$ 1.3721.w. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.