L(s) = 1 | + 2·2-s + 2·4-s − 2·13-s − 4·16-s + 4·17-s − 4·26-s − 20·29-s − 8·32-s + 8·34-s − 4·37-s + 16·41-s − 5·49-s − 4·52-s − 8·53-s − 40·58-s + 14·61-s − 8·64-s + 8·68-s + 28·73-s − 8·74-s + 32·82-s − 34·97-s − 10·98-s − 24·101-s − 16·106-s + 10·109-s − 8·113-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s − 0.554·13-s − 16-s + 0.970·17-s − 0.784·26-s − 3.71·29-s − 1.41·32-s + 1.37·34-s − 0.657·37-s + 2.49·41-s − 5/7·49-s − 0.554·52-s − 1.09·53-s − 5.25·58-s + 1.79·61-s − 64-s + 0.970·68-s + 3.27·73-s − 0.929·74-s + 3.53·82-s − 3.45·97-s − 1.01·98-s − 2.38·101-s − 1.55·106-s + 0.957·109-s − 0.752·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.045639809832312220968668237407, −7.46678658042041033049343800975, −6.99182605075727565742724929802, −6.66175602749173699922625283942, −5.96391714742476427877734512505, −5.60694328736998842121660037613, −5.31508624669203565794999838972, −4.92213034669592094010306499374, −4.12503217255581132297434015747, −3.78545707329788062312381068333, −3.50877292142339574199218689538, −2.63519340777820009043746148182, −2.27079729708413704097834802658, −1.40715345955998479729965074286, 0,
1.40715345955998479729965074286, 2.27079729708413704097834802658, 2.63519340777820009043746148182, 3.50877292142339574199218689538, 3.78545707329788062312381068333, 4.12503217255581132297434015747, 4.92213034669592094010306499374, 5.31508624669203565794999838972, 5.60694328736998842121660037613, 5.96391714742476427877734512505, 6.66175602749173699922625283942, 6.99182605075727565742724929802, 7.46678658042041033049343800975, 8.045639809832312220968668237407