Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - x + 43 x^{2} )( 1 + x + 43 x^{2} )$ |
| $1 + 85 x^{2} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.475705518658$, $\pm0.524294481342$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $70$ |
| Isomorphism classes: | 100 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1935$ | $3744225$ | $6321505680$ | $11664103325625$ | $21611482525742175$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $2020$ | $79508$ | $3411748$ | $147008444$ | $6321648310$ | $271818611108$ | $11688189073348$ | $502592611936844$ | $21611482738200100$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):
- $y^2=2 x^6+4 x^5+18 x^4+15 x^3+33 x^2+31 x+29$
- $y^2=6 x^6+12 x^5+11 x^4+2 x^3+13 x^2+7 x+1$
- $y^2=12 x^6+11 x^5+8 x^4+10 x^3+7 x^2+40 x+3$
- $y^2=36 x^6+33 x^5+24 x^4+30 x^3+21 x^2+34 x+9$
- $y^2=26 x^6+24 x^5+41 x^4+16 x^3+13 x^2+25 x+30$
- $y^2=35 x^6+29 x^5+37 x^4+5 x^3+39 x^2+32 x+4$
- $y^2=40 x^6+x^5+12 x^4+12 x^3+30 x^2+17 x+23$
- $y^2=34 x^6+3 x^5+36 x^4+36 x^3+4 x^2+8 x+26$
- $y^2=14 x^6+36 x^5+18 x^4+39 x^3+5 x^2+41 x+25$
- $y^2=42 x^6+22 x^5+11 x^4+31 x^3+15 x^2+37 x+32$
- $y^2=42 x^6+39 x^5+31 x^4+25 x^3+17 x^2+29 x+39$
- $y^2=40 x^6+31 x^5+7 x^4+32 x^3+8 x^2+x+31$
- $y^2=12 x^6+34 x^5+15 x^4+29 x^3+24 x^2+32 x+12$
- $y^2=36 x^6+16 x^5+2 x^4+x^3+29 x^2+10 x+36$
- $y^2=36 x^6+8 x^5+14 x^4+37 x^3+10 x^2+19 x+15$
- $y^2=22 x^6+24 x^5+42 x^4+25 x^3+30 x^2+14 x+2$
- $y^2=32 x^6+32 x^5+18 x^4+32 x^3+34 x^2+8 x+39$
- $y^2=10 x^6+10 x^5+11 x^4+10 x^3+16 x^2+24 x+31$
- $y^2=24 x^6+36 x^5+33 x^4+36 x^3+8 x^2+11 x+40$
- $y^2=29 x^6+22 x^5+13 x^4+22 x^3+24 x^2+33 x+34$
- and 50 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.ab $\times$ 1.43.b and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{43^{2}}$ is 1.1849.dh 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ |
Base change
This is a primitive isogeny class.