| L(s) = 1 | − 3-s + 4-s + 8·7-s + 9-s − 12-s + 12·13-s + 16-s − 8·19-s − 8·21-s − 6·25-s − 27-s + 8·28-s − 16·31-s + 36-s + 4·37-s − 12·39-s − 2·43-s − 48-s + 34·49-s + 12·52-s + 8·57-s + 20·61-s + 8·63-s + 64-s + 24·67-s − 12·73-s + 6·75-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 1/2·4-s + 3.02·7-s + 1/3·9-s − 0.288·12-s + 3.32·13-s + 1/4·16-s − 1.83·19-s − 1.74·21-s − 6/5·25-s − 0.192·27-s + 1.51·28-s − 2.87·31-s + 1/6·36-s + 0.657·37-s − 1.92·39-s − 0.304·43-s − 0.144·48-s + 34/7·49-s + 1.66·52-s + 1.05·57-s + 2.56·61-s + 1.00·63-s + 1/8·64-s + 2.93·67-s − 1.40·73-s + 0.692·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 199692 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 199692 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.584280852\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.584280852\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.839256516861246310549158243199, −8.431244106809584233313098529596, −8.073225194162897967644366211249, −8.053074923430498984481272422442, −7.01817007784847403129570171922, −6.81423271072604050272773407016, −5.89875809676899325705751850229, −5.67121691793086248627773881702, −5.34857079660866437419173667226, −4.42301116378591245230571379491, −3.99608303859767674782634823001, −3.73709481518315656789132229596, −2.22767717792336911349172992876, −1.65654682953384645737437951893, −1.31491108910920543726233044250,
1.31491108910920543726233044250, 1.65654682953384645737437951893, 2.22767717792336911349172992876, 3.73709481518315656789132229596, 3.99608303859767674782634823001, 4.42301116378591245230571379491, 5.34857079660866437419173667226, 5.67121691793086248627773881702, 5.89875809676899325705751850229, 6.81423271072604050272773407016, 7.01817007784847403129570171922, 8.053074923430498984481272422442, 8.073225194162897967644366211249, 8.431244106809584233313098529596, 8.839256516861246310549158243199