L(s) = 1 | − 2·3-s + 4-s + 3·9-s + 11-s − 2·12-s + 16-s − 2·23-s − 10·25-s − 4·27-s − 12·31-s − 2·33-s + 3·36-s − 2·37-s + 44-s − 12·47-s − 2·48-s − 5·49-s − 2·53-s + 64-s + 4·67-s + 4·69-s + 20·75-s + 5·81-s − 6·89-s − 2·92-s + 24·93-s − 20·97-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/2·4-s + 9-s + 0.301·11-s − 0.577·12-s + 1/4·16-s − 0.417·23-s − 2·25-s − 0.769·27-s − 2.15·31-s − 0.348·33-s + 1/2·36-s − 0.328·37-s + 0.150·44-s − 1.75·47-s − 0.288·48-s − 5/7·49-s − 0.274·53-s + 1/8·64-s + 0.488·67-s + 0.481·69-s + 2.30·75-s + 5/9·81-s − 0.635·89-s − 0.208·92-s + 2.48·93-s − 2.03·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5500936517\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5500936517\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.07433016066728121125499972487, −6.99093330071255894275494820065, −6.26030991441211289089148573592, −5.95009651878852125475078071763, −5.85671815365648243578194470848, −5.21904617077696602305759220700, −4.93990077281798148757107408401, −4.38634303924562361149721823813, −3.81933209527513554138512512650, −3.61646225738397093676153018687, −3.02120025281117424297881430460, −2.14827435614165614269081834365, −1.81998707337995438672490638604, −1.34568190088063630717234001359, −0.26605500028990923666648464644,
0.26605500028990923666648464644, 1.34568190088063630717234001359, 1.81998707337995438672490638604, 2.14827435614165614269081834365, 3.02120025281117424297881430460, 3.61646225738397093676153018687, 3.81933209527513554138512512650, 4.38634303924562361149721823813, 4.93990077281798148757107408401, 5.21904617077696602305759220700, 5.85671815365648243578194470848, 5.95009651878852125475078071763, 6.26030991441211289089148573592, 6.99093330071255894275494820065, 7.07433016066728121125499972487