Properties

Label 2.53.c_ed
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 + x + 53 x^{2} )^{2}$
  $1 + 2 x + 107 x^{2} + 106 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.521878836125$, $\pm0.521878836125$
Angle rank:  $1$ (numerical)
Jacobians:  $30$
Cyclic group of points:    no
Non-cyclic primes:   $5, 11$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3025$ $8497225$ $22117638400$ $62174407755625$ $174898997696025625$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $56$ $3020$ $148562$ $7879668$ $418223056$ $22164906710$ $1174709133472$ $62259663501988$ $3299763725048906$ $174887471658463100$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 30 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.b 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-211}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ac_ed$2$(not in LMFDB)
2.53.a_eb$2$(not in LMFDB)
2.53.ab_aca$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ac_ed$2$(not in LMFDB)
2.53.a_eb$2$(not in LMFDB)
2.53.ab_aca$3$(not in LMFDB)
2.53.a_aeb$4$(not in LMFDB)
2.53.b_aca$6$(not in LMFDB)