Properties

Label 4-85280-1.1-c1e2-0-10
Degree $4$
Conductor $85280$
Sign $1$
Analytic cond. $5.43752$
Root an. cond. $1.52703$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 2·5-s − 2·7-s + 4·9-s − 5·11-s − 4·13-s + 6·15-s − 5·17-s − 19-s + 6·21-s − 4·23-s + 2·25-s − 6·27-s − 2·29-s − 14·31-s + 15·33-s + 4·35-s + 5·37-s + 12·39-s − 41-s − 43-s − 8·45-s + 10·47-s + 15·51-s + 4·53-s + 10·55-s + 3·57-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.894·5-s − 0.755·7-s + 4/3·9-s − 1.50·11-s − 1.10·13-s + 1.54·15-s − 1.21·17-s − 0.229·19-s + 1.30·21-s − 0.834·23-s + 2/5·25-s − 1.15·27-s − 0.371·29-s − 2.51·31-s + 2.61·33-s + 0.676·35-s + 0.821·37-s + 1.92·39-s − 0.156·41-s − 0.152·43-s − 1.19·45-s + 1.45·47-s + 2.10·51-s + 0.549·53-s + 1.34·55-s + 0.397·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(85280\)    =    \(2^{5} \cdot 5 \cdot 13 \cdot 41\)
Sign: $1$
Analytic conductor: \(5.43752\)
Root analytic conductor: \(1.52703\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 85280,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5$C_1$$\times$$C_2$ \( ( 1 - T )( 1 + 3 T + p T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + 3 T + p T^{2} ) \)
41$C_1$$\times$$C_2$ \( ( 1 + T )( 1 + p T^{2} ) \)
good3$C_4$ \( 1 + p T + 5 T^{2} + p^{2} T^{3} + p^{2} T^{4} \) 2.3.d_f
7$D_{4}$ \( 1 + 2 T + 4 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.7.c_e
11$D_{4}$ \( 1 + 5 T + 27 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.11.f_bb
17$D_{4}$ \( 1 + 5 T + 29 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.17.f_bd
19$D_{4}$ \( 1 + T + 9 T^{2} + p T^{3} + p^{2} T^{4} \) 2.19.b_j
23$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.23.e_o
29$D_{4}$ \( 1 + 2 T + 6 T^{2} + 2 p T^{3} + p^{2} T^{4} \) 2.29.c_g
31$D_{4}$ \( 1 + 14 T + 108 T^{2} + 14 p T^{3} + p^{2} T^{4} \) 2.31.o_ee
37$D_{4}$ \( 1 - 5 T + 36 T^{2} - 5 p T^{3} + p^{2} T^{4} \) 2.37.af_bk
43$D_{4}$ \( 1 + T - 26 T^{2} + p T^{3} + p^{2} T^{4} \) 2.43.b_aba
47$D_{4}$ \( 1 - 10 T + 96 T^{2} - 10 p T^{3} + p^{2} T^{4} \) 2.47.ak_ds
53$D_{4}$ \( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} \) 2.53.ae_g
59$C_2^2$ \( 1 + 72 T^{2} + p^{2} T^{4} \) 2.59.a_cu
61$D_{4}$ \( 1 - 5 T - 15 T^{2} - 5 p T^{3} + p^{2} T^{4} \) 2.61.af_ap
67$D_{4}$ \( 1 + 6 T + 36 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.67.g_bk
71$D_{4}$ \( 1 + 5 T - 33 T^{2} + 5 p T^{3} + p^{2} T^{4} \) 2.71.f_abh
73$D_{4}$ \( 1 - T + 45 T^{2} - p T^{3} + p^{2} T^{4} \) 2.73.ab_bt
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 14 T + p T^{2} ) \) 2.79.o_gc
83$C_2^2$ \( 1 + 134 T^{2} + p^{2} T^{4} \) 2.83.a_fe
89$D_{4}$ \( 1 + 8 T + 118 T^{2} + 8 p T^{3} + p^{2} T^{4} \) 2.89.i_eo
97$D_{4}$ \( 1 + 10 T + 104 T^{2} + 10 p T^{3} + p^{2} T^{4} \) 2.97.k_ea
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.8674203095, −14.2906763893, −13.4336751911, −13.1961430689, −12.7768597857, −12.3722519320, −11.9820224469, −11.5439982771, −11.0225957597, −10.8106360816, −10.3987409333, −9.76095717204, −9.37035406688, −8.70626062509, −8.03148042778, −7.47177974025, −7.17214766692, −6.65166471530, −5.87394820759, −5.54377908567, −5.15379699824, −4.29881881046, −3.97656557291, −2.89306628083, −2.11814460777, 0, 0, 2.11814460777, 2.89306628083, 3.97656557291, 4.29881881046, 5.15379699824, 5.54377908567, 5.87394820759, 6.65166471530, 7.17214766692, 7.47177974025, 8.03148042778, 8.70626062509, 9.37035406688, 9.76095717204, 10.3987409333, 10.8106360816, 11.0225957597, 11.5439982771, 11.9820224469, 12.3722519320, 12.7768597857, 13.1961430689, 13.4336751911, 14.2906763893, 14.8674203095

Graph of the $Z$-function along the critical line