Properties

Label 2.19.b_j
Base field $\F_{19}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $1 + x + 9 x^{2} + 19 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.309637963996$, $\pm0.737036854453$
Angle rank:  $2$ (numerical)
Number field:  4.0.40053.1
Galois group:  $D_{4}$
Jacobians:  $34$
Isomorphism classes:  50

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $391$ $137241$ $47251177$ $17145929853$ $6125614706416$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $21$ $379$ $6891$ $131563$ $2473896$ $47030191$ $893872497$ $16983297379$ $322689050403$ $6131072946214$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 34 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is 4.0.40053.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.ab_j$2$(not in LMFDB)