Properties

Label 2.79.o_gc
Base field $\F_{79}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $( 1 + 79 x^{2} )( 1 + 14 x + 79 x^{2} )$
  $1 + 14 x + 158 x^{2} + 1106 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.5$, $\pm0.788656739538$
Angle rank:  $1$ (numerical)
Jacobians:  $360$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7520$ $39705600$ $242805436640$ $1517052506112000$ $9467940117300869600$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $94$ $6362$ $492466$ $38948638$ $3076947214$ $243089098202$ $19203908419426$ $1517108688069118$ $119851596642512254$ $9468276083013490202$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 360 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79^{2}}$.

Endomorphism algebra over $\F_{79}$
The isogeny class factors as 1.79.a $\times$ 1.79.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{79}$
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.abm $\times$ 1.6241.gc. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.ao_gc$2$(not in LMFDB)