Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 79 x^{2} )( 1 + 14 x + 79 x^{2} )$ |
| $1 + 14 x + 158 x^{2} + 1106 x^{3} + 6241 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.788656739538$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $360$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7520$ | $39705600$ | $242805436640$ | $1517052506112000$ | $9467940117300869600$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $94$ | $6362$ | $492466$ | $38948638$ | $3076947214$ | $243089098202$ | $19203908419426$ | $1517108688069118$ | $119851596642512254$ | $9468276083013490202$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 360 curves (of which all are hyperelliptic):
- $y^2=9 x^6+64 x^5+18 x^4+55 x^3+22 x^2+x+73$
- $y^2=x^6+58 x^4+30 x^3+58 x^2+1$
- $y^2=77 x^6+51 x^5+51 x^4+18 x^3+69 x^2+51 x+15$
- $y^2=4 x^6+32 x^5+59 x^4+63 x^3+50 x^2+65 x+47$
- $y^2=5 x^6+52 x^5+7 x^4+49 x^2+24 x+76$
- $y^2=7 x^6+38 x^5+71 x^4+48 x^3+34 x^2+x+66$
- $y^2=47 x^6+3 x^5+76 x^4+32 x^3+36 x^2+3 x+48$
- $y^2=15 x^6+20 x^5+48 x^4+41 x^3+43 x^2+18 x+69$
- $y^2=9 x^6+30 x^5+37 x^4+53 x^3+71 x^2+20 x+72$
- $y^2=11 x^6+21 x^3+53 x^2+33 x+40$
- $y^2=76 x^6+25 x^5+15 x^4+39 x^3+35 x^2+6 x+71$
- $y^2=18 x^6+56 x^5+30 x^4+33 x^3+6 x^2+54 x+11$
- $y^2=51 x^6+47 x^5+67 x^4+10 x^3+11 x^2+24 x+74$
- $y^2=46 x^6+33 x^5+36 x^4+41 x^3+18 x^2+56 x$
- $y^2=44 x^6+26 x^5+37 x^4+28 x^3+22 x^2+40 x+40$
- $y^2=58 x^6+36 x^5+15 x^4+33 x^3+13 x^2+12 x+41$
- $y^2=70 x^6+12 x^5+55 x^4+43 x^3+26 x^2+55 x+71$
- $y^2=38 x^6+6 x^5+9 x^4+15 x^3+6 x^2+32 x+3$
- $y^2=2 x^6+22 x^5+47 x^4+34 x^3+38 x^2+10 x+64$
- $y^2=62 x^6+72 x^5+42 x^4+75 x^3+15 x^2+19 x+72$
- and 340 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79^{2}}$.
Endomorphism algebra over $\F_{79}$| The isogeny class factors as 1.79.a $\times$ 1.79.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{79^{2}}$ is 1.6241.abm $\times$ 1.6241.gc. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.ao_gc | $2$ | (not in LMFDB) |