Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 5 x - 15 x^{2} - 305 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.123001317147$, $\pm0.707295693069$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1756231821.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $72$ |
| Isomorphism classes: | 72 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3397$ | $13645749$ | $51234032977$ | $191793308326581$ | $713354653104111952$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $57$ | $3667$ | $225717$ | $13852051$ | $844610202$ | $51520355827$ | $3142749552657$ | $191707327438243$ | $11694146208413397$ | $713342914574935702$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=50 x^6+27 x^5+10 x^4+22 x^3+48 x^2+57 x+4$
- $y^2=5 x^6+26 x^5+30 x^4+53 x^3+39 x^2+x+46$
- $y^2=40 x^6+56 x^5+37 x^4+47 x^3+47 x^2+2 x+49$
- $y^2=27 x^6+59 x^5+51 x^4+35 x^3+53 x^2+45 x+16$
- $y^2=44 x^6+57 x^5+6 x^4+39 x^3+12 x^2+37 x+47$
- $y^2=24 x^6+57 x^5+16 x^4+4 x^3+20 x^2+38 x+41$
- $y^2=16 x^6+28 x^5+35 x^4+34 x^3+9 x^2+38 x+24$
- $y^2=44 x^6+35 x^5+18 x^4+2 x^3+2 x^2+58 x+3$
- $y^2=30 x^6+11 x^5+60 x^4+43 x^3+43 x^2+60 x+53$
- $y^2=43 x^6+40 x^5+44 x^4+18 x^3+49 x^2+18 x+42$
- $y^2=43 x^6+16 x^5+44 x^4+19 x^3+29 x^2+49 x+2$
- $y^2=28 x^6+40 x^5+8 x^4+31 x^3+23 x^2+32 x+24$
- $y^2=23 x^6+32 x^5+8 x^4+2 x^3+12 x^2+48 x+7$
- $y^2=55 x^6+23 x^5+26 x^4+8 x^3+x^2+21 x+23$
- $y^2=25 x^6+45 x^5+58 x^3+49 x^2+57 x+31$
- $y^2=43 x^6+43 x^5+13 x^4+47 x^3+54 x^2+58 x+3$
- $y^2=2 x^6+32 x^5+9 x^3+12 x^2+42 x+57$
- $y^2=20 x^6+50 x^5+11 x^4+47 x^3+36 x^2+60 x+48$
- $y^2=21 x^6+20 x^5+55 x^4+21 x^3+39 x^2+50 x+56$
- $y^2=29 x^6+58 x^5+49 x^4+37 x^3+60 x^2+46 x+17$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.1756231821.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.f_ap | $2$ | (not in LMFDB) |