Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + x - 26 x^{2} + 43 x^{3} + 1849 x^{4}$ |
| Frobenius angles: | $\pm0.220394801312$, $\pm0.820978645846$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.172772057.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $44$ |
| Isomorphism classes: | 44 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1868$ | $3325040$ | $6338041808$ | $11707931345600$ | $21611492516814948$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $45$ | $1797$ | $79716$ | $3424569$ | $147008515$ | $6321601974$ | $271817741457$ | $11688196693041$ | $502592582505468$ | $21611481845141557$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=17 x^6+19 x^5+37 x^4+39 x^3+35 x^2+39 x+20$
- $y^2=13 x^6+6 x^5+5 x^4+27 x^3+21 x^2+16 x+20$
- $y^2=13 x^6+26 x^5+23 x^4+9 x^3+28 x^2+28 x+4$
- $y^2=27 x^6+18 x^5+7 x^4+35 x^3+19 x^2+3 x+17$
- $y^2=21 x^6+18 x^5+11 x^4+18 x^3+2 x^2+9 x$
- $y^2=38 x^6+9 x^5+33 x^3+26 x^2+5 x+5$
- $y^2=7 x^6+39 x^5+40 x^4+5 x^3+20 x^2+37 x$
- $y^2=41 x^6+35 x^5+12 x^4+23 x^3+33 x^2+40 x+8$
- $y^2=40 x^6+42 x^5+7 x^4+40 x^3+37 x^2+29 x+38$
- $y^2=40 x^6+6 x^5+42 x^4+16 x^3+31 x^2+8$
- $y^2=11 x^6+5 x^5+8 x^4+30 x^3+8 x^2+30 x+7$
- $y^2=40 x^6+37 x^5+27 x^4+30 x^3+6 x^2+39 x+23$
- $y^2=36 x^6+13 x^5+6 x^4+15 x^3+31 x^2+39 x+8$
- $y^2=25 x^6+40 x^5+11 x^4+13 x^3+16 x$
- $y^2=19 x^6+8 x^5+38 x^4+23 x^3+38 x^2+27 x$
- $y^2=35 x^5+30 x^4+24 x^3+4 x^2+29 x$
- $y^2=30 x^6+31 x^5+11 x^4+10 x^3+15 x^2+8 x+21$
- $y^2=19 x^6+6 x^5+36 x^4+13 x^3+40 x^2+14 x+3$
- $y^2=18 x^6+13 x^5+23 x^4+12 x^3+14 x^2+40 x+5$
- $y^2=4 x^6+17 x^5+40 x^4+26 x^3+17 x^2+7 x+10$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The endomorphism algebra of this simple isogeny class is 4.0.172772057.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.ab_aba | $2$ | (not in LMFDB) |