Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 134 x^{2} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.399516849557$, $\pm0.600483150443$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{2}, \sqrt{-3})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $417$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7024$ | $49336576$ | $326940010096$ | $2251895782772736$ | $15516041179328679664$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $7158$ | $571788$ | $47449966$ | $3939040644$ | $326939646822$ | $27136050989628$ | $2252292387060958$ | $186940255267540404$ | $15516041171451505878$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 417 curves (of which all are hyperelliptic):
- $y^2=81 x^6+70 x^5+8 x^4+7 x^3+58 x^2+27 x+32$
- $y^2=79 x^6+57 x^5+16 x^4+14 x^3+33 x^2+54 x+64$
- $y^2=64 x^6+37 x^5+76 x^4+60 x^3+43 x^2+49 x+63$
- $y^2=45 x^6+74 x^5+69 x^4+37 x^3+3 x^2+15 x+43$
- $y^2=28 x^6+42 x^5+37 x^4+59 x^3+26 x^2+46 x+1$
- $y^2=64 x^6+66 x^5+54 x^4+45 x^3+56 x^2+45 x+16$
- $y^2=45 x^6+49 x^5+25 x^4+7 x^3+29 x^2+7 x+32$
- $y^2=2 x^6+31 x^5+x^4+44 x^3+14 x^2+61 x+36$
- $y^2=4 x^6+62 x^5+2 x^4+5 x^3+28 x^2+39 x+72$
- $y^2=59 x^6+78 x^5+41 x^4+48 x^3+32 x^2+20 x+78$
- $y^2=35 x^6+73 x^5+82 x^4+13 x^3+64 x^2+40 x+73$
- $y^2=71 x^6+62 x^5+46 x^4+72 x^3+56 x^2+6 x+6$
- $y^2=59 x^6+41 x^5+9 x^4+61 x^3+29 x^2+12 x+12$
- $y^2=58 x^6+47 x^5+7 x^4+67 x^3+23 x^2+8 x+48$
- $y^2=33 x^6+11 x^5+14 x^4+51 x^3+46 x^2+16 x+13$
- $y^2=68 x^6+18 x^5+25 x^4+57 x^3+19 x^2+76 x+57$
- $y^2=12 x^6+4 x^5+62 x^4+41 x^2+67 x+13$
- $y^2=67 x^6+29 x^5+28 x^4+22 x^3+2 x^2+48 x+30$
- $y^2=3 x^6+14 x^5+64 x^4+25 x^3+25 x^2+x+63$
- $y^2=6 x^6+28 x^5+45 x^4+50 x^3+50 x^2+2 x+43$
- and 397 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{2}, \sqrt{-3})\). |
| The base change of $A$ to $\F_{83^{2}}$ is 1.6889.fe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.