Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 23 x^{2} )( 1 + 8 x + 23 x^{2} )$ |
$1 + 4 x + 14 x^{2} + 92 x^{3} + 529 x^{4}$ | |
Frobenius angles: | $\pm0.363071407864$, $\pm0.813988011405$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $82$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $640$ | $286720$ | $150144640$ | $78561280000$ | $41367356483200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $28$ | $542$ | $12340$ | $280734$ | $6427148$ | $148038014$ | $3404772644$ | $78311540926$ | $1801155847420$ | $41426494425182$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 82 curves (of which all are hyperelliptic):
- $y^2=7 x^6+13 x^5+3 x^4+22 x^3+22 x^2+6 x$
- $y^2=16 x^6+14 x^5+10 x^4+5 x^3+16 x^2+13 x+6$
- $y^2=15 x^5+x^4+6 x^3+x^2+15 x$
- $y^2=10 x^6+14 x^5+9 x^4+7 x^3+12 x^2+9 x+8$
- $y^2=15 x^6+17 x^5+4 x^4+13 x^3+12 x^2+4 x+21$
- $y^2=17 x^5+18 x^4+6 x^2+7 x$
- $y^2=2 x^6+18 x^5+4 x^4+13 x^3+19 x^2+15 x+14$
- $y^2=6 x^6+2 x^5+14 x^4+10 x^3+7 x^2+19 x+3$
- $y^2=12 x^5+10 x^4+5 x^2+9 x+5$
- $y^2=6 x^6+14 x^5+10 x^4+3 x^3+6 x^2+12 x+10$
- $y^2=12 x^6+19 x^5+10 x^4+10 x^3+17 x^2+22 x+3$
- $y^2=4 x^6+17 x^5+17 x^4+11 x^3+17 x^2+17 x+4$
- $y^2=7 x^5+13 x^4+15 x^3+7 x^2+20 x$
- $y^2=17 x^6+13 x^5+10 x^4+2 x^3+18 x+6$
- $y^2=12 x^6+20 x^5+x^4+20 x^3+8 x^2+15 x+3$
- $y^2=18 x^6+15 x^5+17 x^4+2 x^3+20 x^2+9$
- $y^2=13 x^6+22 x^5+9 x^4+21 x^3+20 x^2+7 x$
- $y^2=2 x^6+11 x^5+13 x^4+12 x^3+2 x^2+17 x+9$
- $y^2=9 x^6+13 x^5+16 x^4+3 x^3+19 x^2+18 x+12$
- $y^2=x^6+15 x^5+12 x^4+18 x^3+3 x^2+x+3$
- and 62 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The isogeny class factors as 1.23.ae $\times$ 1.23.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.am_da | $2$ | (not in LMFDB) |
2.23.ae_o | $2$ | (not in LMFDB) |
2.23.m_da | $2$ | (not in LMFDB) |