L(s) = 1 | − 2-s + 4-s − 4·7-s − 8-s − 6·11-s + 2·13-s + 4·14-s + 16-s − 6·17-s + 4·19-s + 6·22-s − 25-s − 2·26-s − 4·28-s + 8·31-s − 32-s + 6·34-s + 8·37-s − 4·38-s − 2·43-s − 6·44-s + 18·47-s − 49-s + 50-s + 2·52-s + 12·53-s + 4·56-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 1.51·7-s − 0.353·8-s − 1.80·11-s + 0.554·13-s + 1.06·14-s + 1/4·16-s − 1.45·17-s + 0.917·19-s + 1.27·22-s − 1/5·25-s − 0.392·26-s − 0.755·28-s + 1.43·31-s − 0.176·32-s + 1.02·34-s + 1.31·37-s − 0.648·38-s − 0.304·43-s − 0.904·44-s + 2.62·47-s − 1/7·49-s + 0.141·50-s + 0.277·52-s + 1.64·53-s + 0.534·56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.1830201225, −12.8571746215, −12.1853797856, −11.9118486001, −11.2680639273, −11.0333602201, −10.4854111065, −10.1152647782, −9.87204525884, −9.35322032957, −8.99827537344, −8.27873568760, −8.26804890939, −7.53175275772, −7.06148502534, −6.73860900675, −6.19336990210, −5.65487654062, −5.37363015538, −4.45990921767, −4.00726754984, −3.19909645813, −2.57462971648, −2.44850978333, −0.998052645277, 0,
0.998052645277, 2.44850978333, 2.57462971648, 3.19909645813, 4.00726754984, 4.45990921767, 5.37363015538, 5.65487654062, 6.19336990210, 6.73860900675, 7.06148502534, 7.53175275772, 8.26804890939, 8.27873568760, 8.99827537344, 9.35322032957, 9.87204525884, 10.1152647782, 10.4854111065, 11.0333602201, 11.2680639273, 11.9118486001, 12.1853797856, 12.8571746215, 13.1830201225