Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 14 x + 67 x^{2} )( 1 - 4 x + 67 x^{2} )$ |
$1 - 18 x + 190 x^{2} - 1206 x^{3} + 4489 x^{4}$ | |
Frobenius angles: | $\pm0.173442769152$, $\pm0.421429069538$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $210$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3456$ | $20404224$ | $90702654336$ | $406071480877056$ | $1822834862019236736$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $50$ | $4546$ | $301574$ | $20151310$ | $1350122930$ | $90459032722$ | $6060720319718$ | $406067707340254$ | $27206534071007858$ | $1822837800626938786$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):
- $y^2=52 x^6+23 x^5+62 x^4+29 x^3+38 x^2+18 x+59$
- $y^2=30 x^6+17 x^5+40 x^4+26 x^3+29 x^2+36 x+43$
- $y^2=13 x^6+57 x^5+58 x^4+58 x^3+30 x^2+20 x+57$
- $y^2=47 x^6+32 x^5+22 x^4+9 x^3+3 x^2+49 x+51$
- $y^2=58 x^6+33 x^5+17 x^4+11 x^3+22 x^2+30 x+55$
- $y^2=34 x^6+57 x^5+x^4+x^3+47 x^2+48 x+55$
- $y^2=2 x^6+44 x^5+30 x^4+20 x^3+2 x^2+9 x+34$
- $y^2=32 x^6+65 x^5+39 x^3+46 x^2+63 x+1$
- $y^2=52 x^6+30 x^5+17 x^4+42 x^3+48 x^2+61 x+29$
- $y^2=63 x^6+25 x^5+x^4+22 x^3+x^2+25 x+63$
- $y^2=5 x^6+44 x^5+2 x^4+30 x^3+7 x^2+47 x+5$
- $y^2=61 x^6+64 x^5+34 x^4+46 x^3+12 x^2+16 x+65$
- $y^2=13 x^6+14 x^5+10 x^4+36 x^2+26 x+18$
- $y^2=20 x^6+12 x^5+x^4+29 x^3+26 x^2+32 x+48$
- $y^2=2 x^6+15 x^5+37 x^4+4 x^3+6 x^2+2 x+40$
- $y^2=55 x^6+46 x^5+2 x^4+30 x^3+53 x^2+47 x+30$
- $y^2=12 x^6+51 x^5+6 x^4+43 x^3+20 x^2+14 x+18$
- $y^2=46 x^6+2 x^5+34 x^4+42 x^3+9 x^2+23 x+41$
- $y^2=4 x^6+35 x^5+65 x^4+2 x^3+65 x^2+35 x+4$
- $y^2=24 x^6+45 x^5+3 x^4+29 x^3+38 x^2+9 x+23$
- and 190 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The isogeny class factors as 1.67.ao $\times$ 1.67.ae and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ak_da | $2$ | (not in LMFDB) |
2.67.k_da | $2$ | (not in LMFDB) |
2.67.s_hi | $2$ | (not in LMFDB) |