Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 9 x + 53 x^{2} )( 1 - 3 x + 53 x^{2} )$ |
$1 - 12 x + 133 x^{2} - 636 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.287893547303$, $\pm0.433942022438$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $140$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2295$ | $8241345$ | $22336482240$ | $62269171623225$ | $174875973899073975$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $42$ | $2932$ | $150030$ | $7891684$ | $418168002$ | $22164261334$ | $1174711127226$ | $62259682671556$ | $3299763514356630$ | $174887470737866932$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=20 x^6+39 x^5+24 x^4+33 x^3+24 x^2+39 x+20$
- $y^2=12 x^6+15 x^5+6 x^4+13 x^3+6 x^2+15 x+12$
- $y^2=46 x^6+45 x^5+39 x^4+28 x^3+39 x^2+45 x+46$
- $y^2=10 x^6+4 x^5+2 x^4+24 x^3+6 x^2+39 x+40$
- $y^2=43 x^6+4 x^5+43 x^4+11 x^3+5 x^2+47 x+32$
- $y^2=26 x^6+5 x^5+18 x^4+25 x^3+49 x^2+26 x+14$
- $y^2=49 x^6+52 x^5+51 x^4+38 x^3+51 x^2+52 x+49$
- $y^2=43 x^6+x^5+34 x^4+43 x^3+31 x^2+14 x+24$
- $y^2=26 x^6+23 x^5+36 x^4+15 x^3+36 x^2+23 x+26$
- $y^2=x^6+6 x^5+37 x^4+29 x^3+37 x^2+6 x+1$
- $y^2=34 x^6+29 x^5+48 x^4+2 x^3+23 x^2+17 x+21$
- $y^2=2 x^6+14 x^4+30 x^3+14 x^2+2$
- $y^2=35 x^6+7 x^5+29 x^4+18 x^3+11 x^2+27 x+7$
- $y^2=35 x^6+7 x^5+15 x^4+42 x^3+15 x^2+7 x+35$
- $y^2=49 x^6+31 x^5+15 x^4+31 x^3+15 x^2+31 x+49$
- $y^2=41 x^6+51 x^5+33 x^4+33 x^3+33 x^2+51 x+41$
- $y^2=41 x^6+6 x^5+47 x^4+49 x^3+35 x^2+2 x+16$
- $y^2=43 x^6+7 x^5+52 x^4+30 x^3+52 x^2+7 x+43$
- $y^2=30 x^6+9 x^5+33 x^4+43 x^3+24 x^2+39 x+45$
- $y^2=39 x^6+43 x^5+41 x^4+25 x^3+47 x^2+34 x+33$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.aj $\times$ 1.53.ad and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ag_db | $2$ | (not in LMFDB) |
2.53.g_db | $2$ | (not in LMFDB) |
2.53.m_fd | $2$ | (not in LMFDB) |