-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2295, 'abvar_counts': [2295, 8241345, 22336482240, 62269171623225, 174875973899073975, 491256692367892254720, 1379946247239375541716255, 3876268568240703067142142825, 10888439506231062409376127606720, 30585627355968233456361280415352225], 'abvar_counts_str': '2295 8241345 22336482240 62269171623225 174875973899073975 491256692367892254720 1379946247239375541716255 3876268568240703067142142825 10888439506231062409376127606720 30585627355968233456361280415352225 ', 'angle_corank': 0, 'angle_rank': 2, 'angles': [0.287893547302812, 0.433942022437832], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 42, 'curve_counts': [42, 2932, 150030, 7891684, 418168002, 22164261334, 1174711127226, 62259682671556, 3299763514356630, 174887470737866932], 'curve_counts_str': '42 2932 150030 7891684 418168002 22164261334 1174711127226 62259682671556 3299763514356630 174887470737866932 ', 'curves': ['y^2=20*x^6+39*x^5+24*x^4+33*x^3+24*x^2+39*x+20', 'y^2=12*x^6+15*x^5+6*x^4+13*x^3+6*x^2+15*x+12', 'y^2=46*x^6+45*x^5+39*x^4+28*x^3+39*x^2+45*x+46', 'y^2=10*x^6+4*x^5+2*x^4+24*x^3+6*x^2+39*x+40', 'y^2=43*x^6+4*x^5+43*x^4+11*x^3+5*x^2+47*x+32', 'y^2=26*x^6+5*x^5+18*x^4+25*x^3+49*x^2+26*x+14', 'y^2=49*x^6+52*x^5+51*x^4+38*x^3+51*x^2+52*x+49', 'y^2=43*x^6+x^5+34*x^4+43*x^3+31*x^2+14*x+24', 'y^2=26*x^6+23*x^5+36*x^4+15*x^3+36*x^2+23*x+26', 'y^2=x^6+6*x^5+37*x^4+29*x^3+37*x^2+6*x+1', 'y^2=34*x^6+29*x^5+48*x^4+2*x^3+23*x^2+17*x+21', 'y^2=2*x^6+14*x^4+30*x^3+14*x^2+2', 'y^2=35*x^6+7*x^5+29*x^4+18*x^3+11*x^2+27*x+7', 'y^2=35*x^6+7*x^5+15*x^4+42*x^3+15*x^2+7*x+35', 'y^2=49*x^6+31*x^5+15*x^4+31*x^3+15*x^2+31*x+49', 'y^2=41*x^6+51*x^5+33*x^4+33*x^3+33*x^2+51*x+41', 'y^2=41*x^6+6*x^5+47*x^4+49*x^3+35*x^2+2*x+16', 'y^2=43*x^6+7*x^5+52*x^4+30*x^3+52*x^2+7*x+43', 'y^2=30*x^6+9*x^5+33*x^4+43*x^3+24*x^2+39*x+45', 'y^2=39*x^6+43*x^5+41*x^4+25*x^3+47*x^2+34*x+33', 'y^2=27*x^6+29*x^5+47*x^4+35*x^3+47*x^2+29*x+27', 'y^2=33*x^6+9*x^5+52*x^4+51*x^3+x^2+28*x+52', 'y^2=45*x^6+34*x^5+x^4+25*x^3+x^2+34*x+45', 'y^2=6*x^6+49*x^5+20*x^4+17*x^3+20*x^2+49*x+6', 'y^2=7*x^6+24*x^5+36*x^4+24*x^3+36*x^2+24*x+7', 'y^2=33*x^6+20*x^5+16*x^4+7*x^3+5*x^2+5*x+43', 'y^2=5*x^6+26*x^5+12*x^4+22*x^3+12*x^2+26*x+5', 'y^2=52*x^6+49*x^5+36*x^4+38*x^3+33*x^2+49*x+28', 'y^2=14*x^6+5*x^5+49*x^4+21*x^3+49*x^2+5*x+14', 'y^2=19*x^6+34*x^5+41*x^4+8*x^3+4*x^2+30*x+1', 'y^2=52*x^6+43*x^5+4*x^4+38*x^3+4*x^2+43*x+52', 'y^2=50*x^6+6*x^5+38*x^4+31*x^3+44*x^2+12*x+12', 'y^2=5*x^6+6*x^5+27*x^4+40*x^3+27*x^2+24*x+45', 'y^2=3*x^6+19*x^5+26*x^4+19*x^3+26*x^2+3*x+37', 'y^2=43*x^6+24*x^5+37*x^4+12*x^3+35*x^2+12*x+45', 'y^2=47*x^6+17*x^5+29*x^4+6*x^3+5*x^2+37*x+37', 'y^2=10*x^6+20*x^5+31*x^4+31*x^3+36*x^2+49*x+15', 'y^2=23*x^6+6*x^5+35*x^4+20*x^3+35*x^2+6*x+23', 'y^2=5*x^6+18*x^5+10*x^4+43*x^3+10*x^2+18*x+5', 'y^2=17*x^6+33*x^5+39*x^4+48*x^3+18*x^2+40*x+22', 'y^2=10*x^6+31*x^5+17*x^4+46*x^3+17*x^2+31*x+10', 'y^2=12*x^6+3*x^5+32*x^4+44*x^3+32*x^2+3*x+12', 'y^2=25*x^6+49*x^5+26*x^4+38*x^3+29*x^2+45*x+1', 'y^2=52*x^6+16*x^5+44*x^4+29*x^3+47*x^2+5*x+38', 'y^2=36*x^6+11*x^5+49*x^4+10*x^3+40*x^2+32*x+13', 'y^2=39*x^6+26*x^5+52*x^4+3*x^3+52*x^2+26*x+39', 'y^2=39*x^6+10*x^5+40*x^4+51*x^3+40*x^2+10*x+39', 'y^2=13*x^6+31*x^5+25*x^4+x^3+36*x^2+x+17', 'y^2=17*x^6+14*x^5+52*x^4+14*x^3+29*x^2+42*x+5', 'y^2=25*x^6+48*x^5+25*x^4+51*x^3+25*x^2+48*x+25', 'y^2=18*x^6+44*x^5+11*x^4+29*x^3+19*x^2+29*x+33', 'y^2=46*x^6+48*x^5+28*x^4+51*x^3+28*x^2+48*x+46', 'y^2=50*x^6+41*x^5+32*x^4+25*x^3+12*x^2+8*x+45', 'y^2=4*x^6+50*x^5+51*x^4+14*x^3+51*x^2+50*x+4', 'y^2=12*x^6+10*x^5+24*x^4+29*x^3+20*x^2+3*x+43', 'y^2=3*x^6+21*x^5+44*x^4+45*x^3+44*x^2+21*x+3', 'y^2=51*x^6+38*x^5+6*x^4+26*x^3+6*x^2+38*x+51', 'y^2=39*x^6+16*x^5+21*x^4+7*x^3+10*x^2+49*x+51', 'y^2=39*x^6+43*x^5+x^4+17*x^3+x^2+43*x+39', 'y^2=10*x^6+6*x^5+x^4+52*x^3+x^2+6*x+10', 'y^2=35*x^6+43*x^5+23*x^4+8*x^3+41*x^2+12*x+48', 'y^2=39*x^6+25*x^5+x^4+7*x^3+40*x^2+34*x+21', 'y^2=15*x^6+38*x^5+21*x^4+22*x^3+21*x^2+38*x+15', 'y^2=2*x^6+34*x^5+38*x^4+16*x^3+38*x^2+34*x+2', 'y^2=45*x^6+25*x^5+50*x^4+50*x^3+10*x^2+12*x+26', 'y^2=25*x^6+37*x^5+21*x^4+26*x^3+48*x^2+38*x+19', 'y^2=38*x^6+31*x^5+17*x^4+29*x^3+51*x^2+29*x+14', 'y^2=7*x^6+13*x^5+37*x^4+4*x^3+3*x^2+37*x+19', 'y^2=41*x^6+8*x^5+28*x^4+51*x^3+x^2+2*x+51', 'y^2=32*x^6+18*x^5+52*x^4+18*x^3+52*x^2+18*x+32', 'y^2=x^6+40*x^5+47*x^4+41*x^3+45*x^2+26*x+26', 'y^2=47*x^6+21*x^5+21*x^4+6*x^3+21*x^2+21*x+47', 'y^2=2*x^6+23*x^5+4*x^4+26*x^3+19*x^2+17*x+45', 'y^2=3*x^6+47*x^5+2*x^4+48*x^3+5*x^2+23*x+27', 'y^2=50*x^6+33*x^4+42*x^3+33*x^2+50', 'y^2=42*x^6+24*x^5+x^4+35*x^3+x^2+24*x+42', 'y^2=27*x^6+47*x^5+14*x^4+48*x^3+35*x^2+8*x+31', 'y^2=25*x^6+14*x^5+18*x^4+48*x^3+18*x^2+14*x+25', 'y^2=15*x^6+7*x^5+38*x^4+34*x^3+4*x^2+23*x+16', 'y^2=11*x^6+46*x^5+7*x^4+13*x^3+30*x^2+28*x+5', 'y^2=3*x^6+51*x^5+37*x^4+31*x^3+10*x^2+6*x+33', 'y^2=36*x^6+10*x^5+46*x^4+19*x^3+46*x^2+10*x+36', 'y^2=27*x^6+36*x^5+5*x^4+52*x^3+14*x+12', 'y^2=3*x^6+51*x^5+6*x^4+52*x^3+29*x^2+23*x+27', 'y^2=34*x^6+16*x^5+6*x^4+44*x^3+6*x^2+16*x+34', 'y^2=46*x^6+34*x^4+44*x^3+34*x^2+46', 'y^2=52*x^6+3*x^5+20*x^4+48*x^3+8*x^2+24*x+51', 'y^2=48*x^6+25*x^5+17*x^4+18*x^3+x^2+24*x+20', 'y^2=24*x^6+30*x^5+48*x^4+3*x^3+48*x^2+30*x+24', 'y^2=15*x^6+44*x^5+10*x^4+49*x^3+5*x^2+26*x+27', 'y^2=28*x^6+31*x^5+12*x^4+42*x^3+32*x^2+17*x+4', 'y^2=22*x^6+x^5+2*x^4+52*x^3+28*x^2+8*x+8', 'y^2=39*x^6+8*x^5+20*x^4+36*x^3+17*x^2+34*x+35', 'y^2=48*x^6+26*x^5+42*x^4+14*x^3+18*x^2+39*x+22', 'y^2=13*x^6+46*x^5+32*x^4+28*x^3+39*x^2+50*x+16', 'y^2=48*x^6+45*x^5+31*x^4+34*x^3+31*x^2+45*x+48', 'y^2=32*x^6+7*x^5+31*x^4+19*x^3+18*x^2+23*x+35', 'y^2=31*x^6+2*x^5+18*x^4+21*x^3+18*x^2+2*x+31', 'y^2=49*x^6+42*x^5+15*x^4+12*x^3+16*x^2+2*x+20', 'y^2=4*x^6+39*x^5+15*x^4+48*x^3+12*x^2+2*x+8', 'y^2=35*x^6+43*x^5+6*x^4+40*x^3+25*x^2+37*x+6', 'y^2=32*x^6+6*x^5+45*x^4+10*x^3+14*x^2+19*x+4', 'y^2=38*x^6+37*x^5+14*x^4+48*x^3+3*x^2+24*x+49', 'y^2=11*x^6+6*x^5+21*x^4+14*x^3+31*x^2+8*x+41', 'y^2=50*x^6+50*x^5+26*x^4+22*x^3+26*x^2+50*x+50', 'y^2=33*x^6+35*x^5+17*x^4+28*x^3+6*x^2+52*x+27', 'y^2=3*x^6+8*x^5+6*x^4+9*x^3+23*x^2+29*x+26', 'y^2=10*x^6+9*x^5+18*x^4+48*x^3+51*x^2+3*x+2', 'y^2=29*x^6+48*x^5+43*x^4+23*x^3+43*x^2+48*x+29', 'y^2=29*x^6+10*x^5+25*x^4+12*x^3+42*x^2+3*x+11', 'y^2=21*x^6+18*x^5+20*x^4+31*x^3+52*x^2+7*x+49', 'y^2=41*x^6+38*x^5+10*x^4+24*x^3+10*x^2+38*x+41', 'y^2=34*x^6+12*x^5+51*x^4+19*x^3+7*x^2+34*x+49', 'y^2=38*x^6+8*x^5+16*x^4+8*x^3+46*x^2+49*x+41', 'y^2=51*x^6+14*x^5+49*x^4+42*x^3+49*x^2+14*x+51', 'y^2=11*x^6+6*x^5+29*x^4+2*x^3+29*x^2+6*x+11', 'y^2=32*x^6+35*x^5+x^4+51*x^3+x^2+35*x+32', 'y^2=35*x^6+6*x^5+27*x^4+52*x^3+19*x^2+49*x+51', 'y^2=15*x^6+10*x^5+46*x^4+x^3+46*x^2+10*x+15', 'y^2=34*x^6+x^5+37*x^4+11*x^3+44*x^2+10*x+3', 'y^2=52*x^6+15*x^5+20*x^4+43*x^3+25*x^2+32*x+26', 'y^2=14*x^6+11*x^5+47*x^4+37*x^3+47*x^2+11*x+14', 'y^2=42*x^6+24*x^5+34*x^4+50*x^3+13*x^2+12*x+38', 'y^2=41*x^6+13*x^5+43*x^4+9*x^3+43*x^2+13*x+41', 'y^2=13*x^6+3*x^5+49*x^4+15*x^3+52*x^2+3*x+3', 'y^2=32*x^6+30*x^5+28*x^4+18*x^3+3*x^2+36*x+24', 'y^2=51*x^6+5*x^5+38*x^4+8*x^3+49*x^2+15*x+19', 'y^2=52*x^6+10*x^5+36*x^4+23*x^3+13*x^2+21*x+36', 'y^2=32*x^6+40*x^5+35*x^4+44*x^3+48*x^2+49*x+51', 'y^2=41*x^6+32*x^5+30*x^4+52*x^3+30*x^2+32*x+41', 'y^2=45*x^6+38*x^5+x^4+42*x^3+20*x^2+10*x+25', 'y^2=44*x^6+52*x^5+40*x^4+45*x^3+40*x^2+52*x+44', 'y^2=19*x^6+15*x^5+18*x^4+51*x^3+5*x^2+15*x+31', 'y^2=51*x^6+43*x^5+3*x^4+17*x^3+3*x^2+43*x+51', 'y^2=28*x^6+3*x^5+21*x^4+52*x^3+21*x^2+3*x+28', 'y^2=32*x^6+5*x^5+20*x^4+24*x^3+20*x^2+5*x+32', 'y^2=31*x^6+41*x^5+20*x^4+14*x^3+20*x^2+41*x+31', 'y^2=14*x^6+8*x^5+27*x^4+26*x^3+10*x^2+32*x+38', 'y^2=46*x^6+6*x^5+23*x^4+8*x^3+23*x^2+6*x+46', 'y^2=x^6+36*x^5+3*x^4+25*x^3+4*x+30'], 'dim1_distinct': 2, 'dim1_factors': 2, 'dim2_distinct': 0, 'dim2_factors': 0, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 8, 'g': 2, 'galois_groups': ['2T1', '2T1'], 'geom_dim1_distinct': 2, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 4, 'geometric_extension_degree': 1, 'geometric_galois_groups': ['2T1', '2T1'], 'geometric_number_fields': ['2.0.131.1', '2.0.203.1'], 'geometric_splitting_field': '4.0.707187649.1', 'geometric_splitting_polynomials': [[324, 0, 167, 0, 1]], 'group_structure_count': 2, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 140, 'is_geometrically_simple': False, 'is_geometrically_squarefree': True, 'is_primitive': True, 'is_simple': False, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 140, 'label': '2.53.am_fd', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 2, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['2.0.131.1', '2.0.203.1'], 'p': 53, 'p_rank': 2, 'p_rank_deficit': 0, 'poly': [1, -12, 133, -636, 2809], 'poly_str': '1 -12 133 -636 2809 ', 'primitive_models': [], 'q': 53, 'real_poly': [1, -12, 27], 'simple_distinct': ['1.53.aj', '1.53.ad'], 'simple_factors': ['1.53.ajA', '1.53.adA'], 'simple_multiplicities': [1, 1], 'singular_primes': ['3,F+3*V-8', '3,-3*F+V+1', '2,-F^2-V-58'], 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.707187649.1', 'splitting_polynomials': [[324, 0, 167, 0, 1]], 'twist_count': 4, 'twists': [['2.53.ag_db', '2.2809.es_lxj', 2], ['2.53.g_db', '2.2809.es_lxj', 2], ['2.53.m_fd', '2.2809.es_lxj', 2]], 'weak_equivalence_count': 8, 'zfv_index': 36, 'zfv_index_factorization': [[2, 2], [3, 2]], 'zfv_is_bass': True, 'zfv_is_maximal': False, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 26593, 'zfv_singular_count': 6, 'zfv_singular_primes': ['3,F+3*V-8', '3,-3*F+V+1', '2,-F^2-V-58']}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 46909
{'base_label': '2.53.am_fd', 'extension_degree': 1, 'extension_label': '1.53.aj', 'multiplicity': 1}
-
id: 46910
{'base_label': '2.53.am_fd', 'extension_degree': 1, 'extension_label': '1.53.ad', 'multiplicity': 1}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.131.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.53.aj', 'galois_group': '2T1', 'places': [['48', '1'], ['4', '1']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.203.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.53.ad', 'galois_group': '2T1', 'places': [['51', '1'], ['1', '1']]}