Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 71 x^{2} )( 1 + 6 x + 71 x^{2} )$ |
$1 + 6 x + 142 x^{2} + 426 x^{3} + 5041 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.615871442562$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $336$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5616$ | $26687232$ | $127720897200$ | $645468068044800$ | $3255392089603972656$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $78$ | $5290$ | $356850$ | $25400446$ | $1804311678$ | $128100587722$ | $9095116785378$ | $645753529914046$ | $45848500660983150$ | $3255243551449228330$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):
- $y^2=55 x^6+2 x^5+41 x^4+60 x^3+38 x^2+70 x$
- $y^2=48 x^6+33 x^5+49 x^4+4 x^3+67 x^2+38 x$
- $y^2=31 x^6+38 x^5+7 x^4+54 x^3+10 x^2+45 x+33$
- $y^2=56 x^6+2 x^5+16 x^4+14 x^3+32 x^2+21 x+13$
- $y^2=25 x^6+51 x^5+18 x^4+38 x^3+18 x^2+61 x+27$
- $y^2=46 x^6+43 x^5+4 x^4+27 x^3+22 x^2+7 x+5$
- $y^2=60 x^6+2 x^5+55 x^4+21 x^3+33 x^2+49 x+30$
- $y^2=33 x^6+47 x^5+39 x^4+63 x^3+39 x^2+47 x+33$
- $y^2=27 x^6+58 x^5+60 x^4+70 x^3+64 x^2+39 x+17$
- $y^2=29 x^6+64 x^5+48 x^4+32 x^3+5 x^2+50 x+49$
- $y^2=14 x^6+59 x^5+3 x^4+34 x^3+3 x^2+59 x+14$
- $y^2=11 x^6+69 x^5+42 x^4+66 x^3+11 x^2+60 x+64$
- $y^2=52 x^6+62 x^5+28 x^4+57 x^3+30 x^2+67 x+20$
- $y^2=20 x^6+3 x^5+11 x^4+48 x^3+4 x^2+61 x+59$
- $y^2=29 x^6+63 x^5+61 x^4+7 x^3+8 x^2+36 x+9$
- $y^2=9 x^6+44 x^5+37 x^4+51 x^3+27 x^2+4 x+30$
- $y^2=12 x^6+47 x^5+23 x^4+46 x^3+61 x^2+67 x+30$
- $y^2=47 x^6+14 x^5+9 x^4+45 x^3+9 x^2+14 x+47$
- $y^2=21 x^6+x^5+21 x^4+15 x^3+31 x^2+41 x+63$
- $y^2=10 x^6+61 x^5+7 x^4+2 x^3+35 x^2+14 x+16$
- and 316 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The isogeny class factors as 1.71.a $\times$ 1.71.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.ec $\times$ 1.5041.fm. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.ag_fm | $2$ | (not in LMFDB) |