Properties

Label 2-9680-1.1-c1-0-40
Degree $2$
Conductor $9680$
Sign $1$
Analytic cond. $77.2951$
Root an. cond. $8.79176$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s − 3·9-s + 4·13-s + 4·17-s + 25-s + 6·29-s + 2·35-s − 2·37-s − 6·41-s + 2·43-s + 3·45-s − 3·49-s − 10·53-s − 12·59-s + 6·61-s + 6·63-s − 4·65-s + 12·67-s − 16·71-s − 4·73-s − 4·79-s + 9·81-s + 2·83-s − 4·85-s + 6·89-s − 8·91-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s − 9-s + 1.10·13-s + 0.970·17-s + 1/5·25-s + 1.11·29-s + 0.338·35-s − 0.328·37-s − 0.937·41-s + 0.304·43-s + 0.447·45-s − 3/7·49-s − 1.37·53-s − 1.56·59-s + 0.768·61-s + 0.755·63-s − 0.496·65-s + 1.46·67-s − 1.89·71-s − 0.468·73-s − 0.450·79-s + 81-s + 0.219·83-s − 0.433·85-s + 0.635·89-s − 0.838·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9680\)    =    \(2^{4} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(77.2951\)
Root analytic conductor: \(8.79176\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.324483875\)
\(L(\frac12)\) \(\approx\) \(1.324483875\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84863294175403502907095803870, −6.88345650860510459922238836452, −6.30336277527995968800606959251, −5.74741088295056651919606011737, −4.98104381995250999987643711767, −4.07532433744834858444870367932, −3.19325780560767377445560084372, −3.01638532533087116670330297173, −1.63198300925213934144992690252, −0.55241827494851289982710173354, 0.55241827494851289982710173354, 1.63198300925213934144992690252, 3.01638532533087116670330297173, 3.19325780560767377445560084372, 4.07532433744834858444870367932, 4.98104381995250999987643711767, 5.74741088295056651919606011737, 6.30336277527995968800606959251, 6.88345650860510459922238836452, 7.84863294175403502907095803870

Graph of the $Z$-function along the critical line