Properties

Label 2-880-1.1-c1-0-14
Degree $2$
Conductor $880$
Sign $-1$
Analytic cond. $7.02683$
Root an. cond. $2.65081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s + 9-s − 11-s − 2·15-s − 4·17-s + 4·19-s − 6·23-s + 25-s + 4·27-s + 2·29-s + 2·33-s − 6·37-s − 10·41-s − 4·43-s + 45-s − 10·47-s − 7·49-s + 8·51-s + 2·53-s − 55-s − 8·57-s + 4·59-s − 14·61-s − 2·67-s + 12·69-s − 4·71-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s + 1/3·9-s − 0.301·11-s − 0.516·15-s − 0.970·17-s + 0.917·19-s − 1.25·23-s + 1/5·25-s + 0.769·27-s + 0.371·29-s + 0.348·33-s − 0.986·37-s − 1.56·41-s − 0.609·43-s + 0.149·45-s − 1.45·47-s − 49-s + 1.12·51-s + 0.274·53-s − 0.134·55-s − 1.05·57-s + 0.520·59-s − 1.79·61-s − 0.244·67-s + 1.44·69-s − 0.474·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(880\)    =    \(2^{4} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(7.02683\)
Root analytic conductor: \(2.65081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 880,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01203279892383742868787683670, −8.934704962347594460230473079718, −8.021503028353452900385880057808, −6.84994184953508601388768982781, −6.21828316962541960142555051462, −5.33507828467506374142167544378, −4.64900344977274697970244927698, −3.20244029150917724069310893514, −1.74060763344336841845484656009, 0, 1.74060763344336841845484656009, 3.20244029150917724069310893514, 4.64900344977274697970244927698, 5.33507828467506374142167544378, 6.21828316962541960142555051462, 6.84994184953508601388768982781, 8.021503028353452900385880057808, 8.934704962347594460230473079718, 10.01203279892383742868787683670

Graph of the $Z$-function along the critical line