Properties

Label 2-290e2-1.1-c1-0-5
Degree $2$
Conductor $84100$
Sign $1$
Analytic cond. $671.541$
Root an. cond. $25.9141$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·7-s + 9-s − 2·13-s − 6·17-s + 4·19-s + 4·21-s − 6·23-s + 4·27-s + 4·31-s + 2·37-s + 4·39-s − 6·41-s − 10·43-s − 6·47-s − 3·49-s + 12·51-s + 6·53-s − 8·57-s + 12·59-s − 2·61-s − 2·63-s − 2·67-s + 12·69-s − 12·71-s + 2·73-s − 8·79-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.755·7-s + 1/3·9-s − 0.554·13-s − 1.45·17-s + 0.917·19-s + 0.872·21-s − 1.25·23-s + 0.769·27-s + 0.718·31-s + 0.328·37-s + 0.640·39-s − 0.937·41-s − 1.52·43-s − 0.875·47-s − 3/7·49-s + 1.68·51-s + 0.824·53-s − 1.05·57-s + 1.56·59-s − 0.256·61-s − 0.251·63-s − 0.244·67-s + 1.44·69-s − 1.42·71-s + 0.234·73-s − 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 84100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 84100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(84100\)    =    \(2^{2} \cdot 5^{2} \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(671.541\)
Root analytic conductor: \(25.9141\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 84100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
29 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.55727628892553, −13.70839139184115, −13.38708726349055, −13.01305644271432, −12.19967600119508, −11.99510532633603, −11.47665526767087, −11.15679548166898, −10.36420054955300, −9.972176126997816, −9.730348774359156, −8.866735099495280, −8.459131243959761, −7.822139202497788, −7.035608748541179, −6.707108740061615, −6.268185388572471, −5.700579712107886, −5.151909112237315, −4.647117758311297, −4.065417719124932, −3.295407495333788, −2.700909639602699, −1.970813116558718, −1.122723999434891, 0, 0, 1.122723999434891, 1.970813116558718, 2.700909639602699, 3.295407495333788, 4.065417719124932, 4.647117758311297, 5.151909112237315, 5.700579712107886, 6.268185388572471, 6.707108740061615, 7.035608748541179, 7.822139202497788, 8.459131243959761, 8.866735099495280, 9.730348774359156, 9.972176126997816, 10.36420054955300, 11.15679548166898, 11.47665526767087, 11.99510532633603, 12.19967600119508, 13.01305644271432, 13.38708726349055, 13.70839139184115, 14.55727628892553

Graph of the $Z$-function along the critical line