Properties

Label 2-75712-1.1-c1-0-75
Degree $2$
Conductor $75712$
Sign $-1$
Analytic cond. $604.563$
Root an. cond. $24.5878$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 7-s + 9-s − 2·11-s + 2·15-s − 3·17-s + 8·19-s + 2·21-s − 6·23-s − 4·25-s − 4·27-s + 9·29-s − 6·31-s − 4·33-s + 35-s + 3·37-s + 3·41-s − 2·43-s + 45-s − 12·47-s + 49-s − 6·51-s + 5·53-s − 2·55-s + 16·57-s + 14·59-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 0.377·7-s + 1/3·9-s − 0.603·11-s + 0.516·15-s − 0.727·17-s + 1.83·19-s + 0.436·21-s − 1.25·23-s − 4/5·25-s − 0.769·27-s + 1.67·29-s − 1.07·31-s − 0.696·33-s + 0.169·35-s + 0.493·37-s + 0.468·41-s − 0.304·43-s + 0.149·45-s − 1.75·47-s + 1/7·49-s − 0.840·51-s + 0.686·53-s − 0.269·55-s + 2.11·57-s + 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75712\)    =    \(2^{6} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(604.563\)
Root analytic conductor: \(24.5878\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 75712,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.28834743528042, −13.87096743936486, −13.29951788078662, −13.20991465692294, −12.30461129615425, −11.79669900609192, −11.36298540235553, −10.78641131191178, −10.01681577602248, −9.683487283732640, −9.417481505677438, −8.546323904825183, −8.177709056246895, −7.946216791582232, −7.163462606543656, −6.742049482066274, −5.881750327518207, −5.417103751037686, −4.950211665384631, −4.010616742119084, −3.713109423613344, −2.813902522163631, −2.488664534896657, −1.858397726253607, −1.116517559300810, 0, 1.116517559300810, 1.858397726253607, 2.488664534896657, 2.813902522163631, 3.713109423613344, 4.010616742119084, 4.950211665384631, 5.417103751037686, 5.881750327518207, 6.742049482066274, 7.163462606543656, 7.946216791582232, 8.177709056246895, 8.546323904825183, 9.417481505677438, 9.683487283732640, 10.01681577602248, 10.78641131191178, 11.36298540235553, 11.79669900609192, 12.30461129615425, 13.20991465692294, 13.29951788078662, 13.87096743936486, 14.28834743528042

Graph of the $Z$-function along the critical line